The Intensive Pre-Service EFL Teacher Education Program in Iran: A Description and Analysis Based on the ENABLE Model
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 74
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JELTAL-5-2_005
تاریخ نمایه سازی: 16 اردیبهشت 1404
چکیده مقاله:
Being a definitive factor in forming the quality of education, any teacher education program needs to be described, investigated, and brought into line with standards. The intensive pre-service teacher education program for prospective English language teachers who enter the Ministry of Education through Teacher Employment Examination is an unexplored context, the content and curriculum of which is described and investigated in this paper. Using a qualitative research design, and through framework analysis approach, the program is reviewed based on the ENABLE model which proposes a sociocultural model of teacher education. The findings revealed that the program typically follows a traditional university-based model with a focus on theoretical knowledge and pedagogical methods, and it fails to establish a systematic sociocultural structure. Lack of feedback provision, guidance and self-mediation opportunities deviates significantly from the sociocultural model outlined by the ENABLE model. Some suggestions are put forward in order to socioculturally uplift the program. Providing constructive feedback, fostering collaboration among student teachers, modeling by the teacher educator, discussing classroom narratives with peers, encouraging collaborative reflection, and keeping reflective journals are among these suggestions which are recommended to be considered by policy makers, curriculum developers and syllabus designers of teacher education programs and teacher educators.
کلیدواژه ها:
نویسندگان
Zahra Dolati
University of Guilan
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :