Next-Generation Drug Delivery: Smart Nanomaterials for Precision Healthcare(focusing oral cancer)

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 18

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JODHN-2-2_002

تاریخ نمایه سازی: 16 اردیبهشت 1404

چکیده مقاله:

The convergence of artificial intelligence and nanotechnology has revolutionized the development of precision therapeutics for oral squamous cell carcinoma (OSCC), addressing critical challenges in drug delivery, tumor ablation, and early detection. This review systematically examines how AI-driven approaches—including machine learning (ML), generative adversarial networks (GANs), and reinforcement learning—optimize nanomaterial design for OSCC applications. ML algorithms predict critical nanocarrier properties (size, shape, surface charge) to enhance tumor targeting, while GANs explore novel nanostructures with stimuli-responsive drug release tailored to the acidic OSCC microenvironment. Reinforcement learning and genetic algorithms further refine surface functionalization and release kinetics, achieving unprecedented tumor-to-normal tissue ratios (۱۸:۱) and sustained therapeutic delivery. Clinically, AI-designed nanotherapeutics demonstrate remarkable advances: (۱) polymeric nanoparticles with optimized mucoadhesion for localized delivery, (۲) photothermal agents with ۸۵% energy conversion efficiency for tumor ablation, and (۳) nanosensors detecting salivary biomarkers at ۰.۱ pg/mL for early diagnosis. Despite these breakthroughs, challenges persist in manufacturing scalability and regulatory adaptation of AI-generated designs. Future directions highlight closed-loop systems integrating real-time patient data and multi-objective optimization for personalized nanomedicine. By bridging computational innovation with biological validation, AI-enabled nanomaterial design promises to transform OSCC management, offering targeted, adaptive, and minimally invasive therapeutic strategies. The convergence of artificial intelligence and nanotechnology has revolutionized the development of precision therapeutics for oral squamous cell carcinoma (OSCC), addressing critical challenges in drug delivery, tumor ablation, and early detection. This review systematically examines how AI-driven approaches—including machine learning (ML), generative adversarial networks (GANs), and reinforcement learning—optimize nanomaterial design for OSCC applications. ML algorithms predict critical nanocarrier properties (size, shape, surface charge) to enhance tumor targeting, while GANs explore novel nanostructures with stimuli-responsive drug release tailored to the acidic OSCC microenvironment. Reinforcement learning and genetic algorithms further refine surface functionalization and release kinetics, achieving unprecedented tumor-to-normal tissue ratios (۱۸:۱) and sustained therapeutic delivery. Clinically, AI-designed nanotherapeutics demonstrate remarkable advances: (۱) polymeric nanoparticles with optimized mucoadhesion for localized delivery, (۲) photothermal agents with ۸۵% energy conversion efficiency for tumor ablation, and (۳) nanosensors detecting salivary biomarkers at ۰.۱ pg/mL for early diagnosis. Despite these breakthroughs, challenges persist in manufacturing scalability and regulatory adaptation of AI-generated designs. Future directions highlight closed-loop systems integrating real-time patient data and multi-objective optimization for personalized nanomedicine. By bridging computational innovation with biological validation, AI-enabled nanomaterial design promises to transform OSCC management, offering targeted, adaptive, and minimally invasive therapeutic strategies.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • 1. Ghahramani Y, Mokhberi M, Mousavi SM, Hashemi SA, Fallahi ...
  • 2. Ghahramani Y, Yaghoobi F, Motamedi R, Jamshidzadeh A, Abbaszadegan ...
  • 3. Abbaszadegan A, Ghahramani Y, Farshad M, Sedigh-Shams M, Gholami ...
  • 4. Nabavizadeh MR, Moazzami F, Gholami A, Mehrabi V, Ghahramani ...
  • 5. Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, ...
  • 6. Asadi A, Rezaei M, Mohammadi E, Khaksar E, Khaksar ...
  • 7. Ghahramani Y, Javanmardi N. Graphene quantum dots and their ...
  • 8. Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar ...
  • 9. Ahmad A, Khan F, Mishra RK, Khan R. Precision ...
  • 10. Wilson B, Geetha KM. Lipid nanoparticles in the development ...
  • 11. Leung MK, Delong A, Alipanahi B, Frey BJ. Machine ...
  • 12. Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial ...
  • 13. Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg ...
  • 14. Chebanov DK, Misyurin VA, Shubina IZ. An algorithm for ...
  • The Role of Artificial Intelligence in Dental Diagnosis and Treatment Planning [مقاله ژورنالی]
  • 16. shahed Shoarishoar S, KaboodMehri R, Fakor F, Sorouri ZR, ...
  • 17. Roy R, Marakkar S, Vayalil MP, Shahanaz A, Anil ...
  • 18. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta ...
  • 19. Wasilewski T, Kamysz W, Gębicki J. AI-assisted detection of ...
  • 20. Dave A. Artificial Intelligence Driven Nanobiosensors: Virus Detection and ...
  • 21. Hassan SA-DH, Almaliki MNS, Hussein ZA, Albehadili HM, Rabeea ...
  • 22. Mazumdar H, Khondakar KR, Das S, Halder A, Kaushik ...
  • AI-enabled Diagnostics and Monitoring in Nanomedicine [مقاله ژورنالی]
  • 24. Sanaee MR, Manesh HD, Janghorban K, Sanaee R, Kooshesh ...
  • 25. Archie S. Leveraging Nano-Enabled AI Technologies for Cancer Prediction, ...
  • 26. Padhiary M, Roy D, Dey P. Mapping the Landscape ...
  • 27. Sonu, Chaudhary V. A paradigm of internet-of-nano-things inspired intelligent ...
  • 28. Ibrahim HK. From Nanotech to AI: The Cutting-Edge Technologies ...
  • 29. Subbhuraam V. FemTech solutions for advancing women’s health. Predictive ...
  • 30. Kashyap B, Kumar R. Sensing methodologies in agriculture for ...
  • 31. Moazzami F, Jahandizi NG, Shokouhi MM, Ghahramani Y. Sealing ...
  • 32. Bagherpour R, Bagherpour G, Mohammadi P. Application of artificial ...
  • 33. Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The ...
  • 34. Gholap AD, Uddin MJ, Faiyazuddin M, Omri A, Gowri ...
  • 35. Ulas C, Das D, Thrippleton MJ, Valdés Hernández MdC, ...
  • 36. Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi ...
  • 37. Tavangar MS, Shafiei F, Eslami Pirharati S, Bakhshandeh M, ...
  • 38. Nosrati H, Nosrati M. Artificial intelligence in regenerative medicine: ...
  • 39. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki ...
  • 40. Suwardi A, Wang F, Xue K, Han MY, Teo ...
  • 41. Ghahramani Y, Ghaffaripour D, Mohammadi N. In Vitro Evaluation ...
  • 42. Ghahramani Y, Mokhberi M, Mousavi SM, Hashemi SA, Lai ...
  • 43. Ghahramani Y, Agharokh M. Advances in Applied Nanobio-Technologies Based ...
  • 44. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi ...
  • 45. Bayhaqi YA, Hamidi A, Navarini AA, Cattin PC, Canbaz ...
  • 46. Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr ...
  • 47. Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chemical reviews. ...
  • 48. Valencia PM, Hanewich-Hollatz MH, Gao W, Karim F, Langer ...
  • 49. Anarjan FS. Active targeting drug delivery nanocarriers: Ligands. Nano-Structures ...
  • 50. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke ...
  • 51. Varshosaz J, Moazen E, Fathi M. Preparation of carvedilol ...
  • 52. Elliott L, Ingham D, Kyne A, Mera N, Pourkashanian ...
  • 53. Acosta‐Angulo B, Diaz‐Angulo J, Lara‐Ramos J, Torres‐Palma R, Martínez‐Pachón ...
  • 54. Ghaedi A, Ghaedi M, Pouranfard A, Ansari A, Avazzadeh ...
  • 55. Zaki MR, Varshosaz J, Fathi M. Preparation of agar ...
  • 56. Polifke W, Geng W, Döbbeling K. Optimization of rate ...
  • 57. Razzaq S, Syed MA, Irfan M, Khan I, Sarfraz ...
  • 58. Peppas NA, Bures CD. Glucose-responsive hydrogels. Encyclopedia of biomaterials ...
  • 59. Ghahramani Y, Shafiei F, Jowkar Z, Kazemian S. The ...
  • 60. Adir O, Poley M, Chen G, Froim S, Krinsky ...
  • 61. Tan P, Chen X, Zhang H, Wei Q, Luo ...
  • Nanotechnology in Dentistry: Potential Applications and Future Perspectives [مقاله ژورنالی]
  • 63. Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa ...
  • 64. Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge ...
  • 65. Cheng L, Wang X, Gong F, Liu T, Liu ...
  • 66. Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling ...
  • 67. Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent ...
  • 68. Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib ...
  • 69. Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy ...
  • 70. Melancon MP, Zhou M, Li C. Cancer theranostics with ...
  • 71. Zhongguan H, Qiang Z, Sen L, Zhang G, Nadeem ...
  • 72. Singh S, Melnik R. Thermal ablation of biological tissues ...
  • 73. Badir A, Refki S, Sekkat Z. Utilizing gold nanoparticles ...
  • 74. Ahmad IZ, Kuddus M, Tabassum H, Ahmad A, Mabood ...
  • 75. Tan YY, Yap PK, Xin Lim GL, Mehta M, ...
  • 76. Ghahramani Y, Tabibi SS, Khan MMR, Asadi A, Mohammadi ...
  • 77. Chugh V, Basu A, Kaushik A, Bhansali S, Basu ...
  • 78. Xie J, Liu G, Eden HS, Ai H, Chen ...
  • 79. Bagheriye L, Kwisthout J. Advancements in Real-Time Oncology Diagnosis: ...
  • 80. Conforti PM, Lazzini G, Russo P, D’Acunto M. Raman ...
  • 81. A Asadi MR, Y Ghahramani. recent advances in bioactive ...
  • 82. Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti ...
  • 83. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar ...
  • 84. Salvati E, Stellacci F, Krol S. Nanosensors for early ...
  • 85. Parisi OI, Scrivano L, Sinicropi MS, Picci N, Puoci ...
  • 86. Edwards K, Edgar T, Manousiouthakis V. Kinetic model reduction ...
  • 87. Ghahramani Y, Saliminasab M. Nanotechnology applications in the diagnosis ...
  • 88. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar ...
  • 89. Adabbo G, Andreozzi A, Iasiello M, Napoli G, Vanoli ...
  • 90. Krieger Filho G, Costa F, Maria GT, Bufacchi P, ...
  • 91. Jeong J-O, Kim M, Kim S, Lee KK, Choi ...
  • 92. Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora ...
  • 93. Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik ...
  • 94. Cheong KY, Fraga MA, Sonar P, Pessoa R, Casanova-Moreno ...
  • 95. Ali MR, Nipu SMA, Khan SA. A decision support ...
  • 96. Sharma PR. Functionalized celluloses and their nanoparticles: synthesis, properties ...
  • 97. Sunshine JC, Peng DY, Green JJ. Uptake and transfection ...
  • نمایش کامل مراجع