An Improved MOGA-DBSCAN with Voronoi-Derived Epsilon for Robust Clustering
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 123
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AICNF01_029
تاریخ نمایه سازی: 11 اردیبهشت 1404
چکیده مقاله:
Clustering is a fundamental task in data mining and machine learning, grouping similar objects based on their features. It has applications in image analysis, market segmentation, and bioinformatics. Among clustering methods, DBSCAN (Density-Based Spatial Clustering of Applications with Noise) stands out for finding arbitrary-shaped clusters and handling noise. DBSCAN requires two parameters: ϵ (neighborhood radius) and MinPts (minimum points for a dense region). Accurate parameter determination is crucial for algorithm performance. This paper proposes a novel approach to DBSCAN parameter determination. Instead of treating ϵ as continuous, we discretize it using radii of empty circles from the Voronoi diagram of the points. This simplifies ϵ selection and enhances clustering robustness. Our method leverages Voronoi geometric properties, offering a more intuitive and accurate way to set ϵ. Experimental results show that this discrete approach simplifies parameter tuning while maintaining or improving clustering quality compared to existing methods. This advancement enables more reliable and efficient clustering in practice.
کلیدواژه ها:
نویسندگان
Hossein Eyvazi
Department of Computer Science, Tarbiat Modares University, Tehran
Ali Rajaei
Department of Computer Science, Tarbiat Modares University, Tehran