Machine Learning for Enhanced Diagnosis of Endometriosis: Challenges and Opportunities
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 49
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS13_145
تاریخ نمایه سازی: 10 اردیبهشت 1404
چکیده مقاله:
Endometriosis is a chronic and complex condition that significantly affects the quality of life for over ۱۹۰ million women globally. Delayed diagnosis can lead to serious complications such as infertility and chronic pain. This study explores the challenges and opportunities of employing machine learning and deep learning models to enhance the diagnosis of endometriosis and improve healthcare outcomes. Key challenges include the variability and complexity of clinical symptoms, a lack of high-quality data, the necessity for specialized knowledge in algorithm implementation, and the absence of standardized evaluation metrics for comparing models (Ellis et al., ۲۰۲۲). Artificial intelligence can potentially reveal hidden patterns in clinical and imaging data. At the same time, machine learning algorithms can facilitate the development of non-invasive screening tools and generate more accurate predictions of treatment outcomes. These advancements are likely to improve diagnostic accuracy and reduce healthcare costs. The study examines various input data, including clinical information, imaging data (MRI and laparoscopic images), and laboratory results (biochemical markers such as CA۱۲۵ and VEGF۱) (Goldstein & Cohen, ۲۰۲۳). It evaluates various models, including deep learning models like ResNet۵۰ and classical models, including decision trees, random forests, logistic regression, and AdaBoost (Zhang et al., ۲۰۲۳). The findings demonstrate that the AdaBoost model performs best in diagnosing endometriosis, achieving an accuracy of ۹۴% and a sensitivity of ۹۳% (Balica et al., ۲۰۲۳). In comparison, the ResNet۵۰ model achieves an accuracy of ۹۱% and a sensitivity of ۸۲% (Visalaxi & Muthu, ۲۰۲۱). To further enhance research in this field, it is recommended that datasets be expanded to incorporate more diverse patient populations and that models be compared across various conditions and similar contexts. Furthermore, clear guidelines for applying artificial intelligence in diagnosing and treating endometriosis are essential. Despite existing challenges, machine learning and deep learning use in analyzing and predicting endometriosis presents significant potential, necessitating ongoing research to refine model performance and increase confidence in their clinical applications.
کلیدواژه ها:
نویسندگان
Maedeh Darodia
Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Iran
Toktam Dehghani
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran