Accelerating Diffusion-Based Graph Generative Models for De Novo Drug Design via Hessian Trace Approximation
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 13
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS13_112
تاریخ نمایه سازی: 10 اردیبهشت 1404
چکیده مقاله:
Diffusion-based models have recently gained prominence in various domains, including graph-structured data and de novo drug design, where they enable the generation of novel molecular structures and optimization of pharmaceutical candidates. In particular, methods such as “Digress” (Vignac et al. ۲۰۲۳) effectively incorporate diffusion processes to model complex interactions within graph data, while Graph Diffusion Policy Optimization (GDPO) (Liu et al. ۲۰۲۴) extends this idea by integrating policy optimization strategies to achieve higher-quality solutions. Compared to Digress, GDPO typically demonstrates higher convergence rate and more robust performance which makes it potentially better solution for advancing graph-based drug design problem and related applications. However, both Digress and GDPO rely heavily on gradient-based optimization, which is not as fast as necessary. On the other hand, computing the Hessian matrix directly to make use of second-order methods and follow the curvature characteristics is computationally expensive. To address these issues, we introduce a novel idea to approximate the Hessian matrix with relatively low cost to better guide the optimization process, providing a more accurate and efficient estimation of curvature that leads to improved directions and lower number of iterations. We trained our model on the ZINC-۲۵۰k dataset, a widely used collection of small molecules, and compared its performance with Digress and GDPO. Our approach demonstrates enhanced efficiency and superior performance over the existing diffusion-based generative models in de novo drug discovery.
کلیدواژه ها:
نویسندگان
Amirhossein Heydari
Department of Engineering Sciences, University of Tehran, Tehran, Iran
Alireza Fotuhi Siahpirani
Laboratory of Bioinformatics and Computational Genomics (LBCG), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
Negin Bagherpour
Department of Engineering Sciences, University of Tehran, Tehran, Iran