Myocardial Iron Overload Assessment with Automatic Segmentation of Cardiac MR Images based on Deep Neural Networks
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 22، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 54
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-22-1_002
تاریخ نمایه سازی: 7 اردیبهشت 1404
چکیده مقاله:
Introduction: Heart failure due to myocardial iron overload is one of the main causes of death in thalassemia major (TM) patients. Therefore, cardiac magnetic resonance (CMR) imaging method with a multi-echo sequence can be used to assess the iron overload of TM patients. This study aimed to evaluate the myocardial iron overload in TM patients with automatic left ventricular (LV) segmentation of CMR images. Material and Methods: Thirty-six TM patients were selected to acquire CMR images and clinical data. Automatic LV segmentation was implemented with U-Net, an automatically adapted deep convolutional neural network based on U-Net. With the signal intensity of the LV segmented area, T۲* value can be calculated at different echo times, a widely used and approved method to assess myocardial iron overload. Results: The accuracy of LV segmentation as measured by intersection-over-union (۰.۹۵) was substantially higher than non-deep learning based methods and at par with other deep learning based methods like. In addition, our results indicate that the proposed method outperformed in assessing LV iron overload over other deep learning based methods in terms of negative predictive value, positive predictive value, and Jaccard. Conclusion: Relying on these outcomes, the proposed method as a deep learning based model yields better LV segmentation and notably impacts assessing myocardial iron overload.
کلیدواژه ها:
Thalassemia Major ، Iron overload ، Myocardium ، magnetic resonance imaging ، Deep learning ، Heavily T۲ Weighted MRM
نویسندگان
Mohamad Amin Bakhshali
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Maryam Gholizadeh
Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.
Parvaneh Layegh
Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Saeid Eslami
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :