Modeling the Relationship between Financial Stability and Banking Risks: Artificial Intelligence Approach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 9

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJAAF-9-2_007

تاریخ نمایه سازی: 6 اردیبهشت 1404

چکیده مقاله:

This aims to evaluate the effect of financial stability efficiency on the financial stability of banks in Iran and Iraq. In addition, this study aims to identify the main factors affecting financial stability and provide solutions to improve risk management and banking supervision. The statistical population of this research includes ۶۶ banks (۲۲ Iranian banks and ۴۴ Iraqi banks) listed on the stock exchanges of Iran and Iraq. The study period is from ۲۰۰۰ to ۲۰۲۳. A wide range of artificial neural network approaches and machine learning algorithms have been used for data analysis. These methods include artificial neural network, deep neural network, convolutional neural network, recurrent neural network, self-organizing neural network, gradient boosting, random forest, decision tree, spatial clustering, k-means algorithm, k-nearest neighbor, support vector regression and support vector machine. This diversity in analytical methods provides the possibility of comprehensive comparison and evaluation of factors affecting the financial stability of banks. The results of various analyzes show that machine learning models and neural networks have a significant performance in examining and evaluating the financial stability of banks. The artificial neural network showed the highest accuracy with a coefficient of determination of ۰.۹۵. Gradient boosting and random forest also had high performance with determination coefficients of ۰.۹۵۶۶ and ۰.۹۴۴۱. Spatial clustering and k-means algorithms could group banks based on their financial stability with an accuracy of nearly ۱۰۰%. The variables of capital adequacy ratio, cash flow, bank size, and Z score were identified as the most important factors affecting financial stability. Deep, convolutional, and recurrent neural network models also showed similar performance with coefficients of determination of about ۰.۹۴. Support vector regression and support vector machine also provided acceptable results with determination coefficients of ۰.۹۱۶۲ and ۰.۸۵۰۰. This study emphasizes using artificial intelligence approaches in risk management and banking supervision. The research findings help develop early warning systems, improve banking supervision, and formulate more efficient monetary policies in Iran and Iraq. It is suggested that the monetary authorities of the two countries use these results to revise the capital adequacy rules and strengthen the banks' liquidity management.

نویسندگان

Hakeem Faraj Gumar

Department of Accounting, Faculty of Economics and Management, Urmia University, Urmia, Iran

Parviz Piri

Department of Accounting, Faculty of Economics and Management, Urmia University, Urmia, Iran

Mehdi Heydari

Department of Accounting, Faculty of Economics and Management, Urmia University, Urmia, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdallah, Z. M., Amin, M. A. and Sanghani, P. (۲۰۱۹). ...
  • Acharya, V. V. and Ryan, S. G. (۲۰۱۶). Banks’ financial ...
  • Amzile, K. and Habachi, M. (۲۰۲۲). Assessment of support vector ...
  • Ghosh, S. (۲۰۱۴). Risk, capital and financial crisis: evidence for ...
  • Mansourian Nezamabad, R., Sheikhi, K. and Mahjoub, M. R. (۲۰۱۶). ...
  • Noman, A. H. M., Gee, C. S. and Isa, C. ...
  • Rodríguez-Pérez, R. and Bajorath, J. (۲۰۲۲). Evolution of support vector ...
  • World Bank. (۲۰۱۶). Global financial development report ۲۰۱۵/۲۰۱۶: Long-term finance. ...
  • Zhang, C. and Xia, S. (۲۰۰۹). K-means clustering algorithm with ...
  • نمایش کامل مراجع