Production Logging and Analysis of Production Logs Using KAPPA Software

سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,388

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:


تاریخ نمایه سازی: 18 دی 1385

چکیده مقاله:

In this article we briefly introduce production logging and its application we analyzed one of the production logs run in one of the wells of Marun field using the KAPPA software. Production logging is the measurement of fluid parameters on a zone-by-zone basis to provide information about the type and movement of fluids within and nearby the wellbore. Production logging is intended primarily for measuring the performance of producing wells. It provides diagnostic information, pinpoints where fluids such as water, oil and gas are entering a well and gives an indication about the efficiency of the perforations. Traditional production logging involves four measurements - flow, density, temperature and pressure. However, only the flow and density readings are used in traditional quantitative production logging analysis. Temperature and pressure data have normally been used in a qualitative way to compute in-situ flow properties and locate zones of entry of fluid into a well. This project is to prepare and analyze the production logs recorded by using Sondex tools run by the National Iranian Drilling Company (N.I.D.C). Analysis and interpretation of the production logs is done by using Kappa engineering software. This program can do quality corrections for reservoirs provided simple and better interpretation. The program can do environmental corrections for layered media and for Iranian reservoir conditions by standard formats to be used in Kappa software.


علی سیدمختاری

BS.c of Petroleum Engineering (PUT) ,Ahwaz,Iran

M.K Ghassem Alaskari

Member of Scientific Mission, Petroleum University of Technology (PUT), Ahwaz Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :