A Hybrid Solution for Transient Pipe Flow based on Method of Characteristics and Lax-Friedrichs Scheme

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 61

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHWE-2-1_002

تاریخ نمایه سازی: 3 اردیبهشت 1404

چکیده مقاله:

Method of Characteristics (MOC) has long been an excellent and widely established technique for analyzing transient flow, especially in a single pipeline with constant wave speed. But, this method has some limitations in terms of mesh sizing while studying multi-pipe systems or systems with different wave speeds. More specifically, it needs all pipes to satisfy the Courant number to be unity while the same time step should be chosen for all pipes. With this, one reach in each pipe remains, which does not satisfy the Courant requirement. As one possible remedy to this shortcoming, a hybrid numerical method based on MOC and a two-step variant of the Lax-Friedrichs method (MOC-LF) is suggested in the present study. This method is compared against the conventional MOC scheme, which adapts interpolation for the remaining length per pipe (MOC-MOC). In the approach, two significant effects of FSI in fluid-filled tubes, namely Poisson and junction coupling, are introduced. The computational simulations are carried out for a reservoir-pipe-valve system with instantaneous and gradual closure of the downstream valve. The results of proposed scheme and those of MOC with interpolation are in good agreement with solutions obtained by MOC with a very fine grid, which are taken as a reference. Detailed comparison of the computational methods in terms of error indicates that the proposed MOC-LF can be a good alternative for conventional MOC schemes.

نویسندگان

Faeze Khalighi

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box ۵۱۳, ۵۶۰۰ MB Eindhoven, The Netherlands.

Ahmad Ahmadi

Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, SAR ۹۹۹۰۷۷, Kowloon, Hong Kong.

Alireza Keramat

Research Institute for Land and Space, Hong Kong Polytechnic University, Hung Hom SAR ۹۹۹۰۷۷, Kowloon, Hong Kong.

Arris Tijsseling

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box ۵۱۳, ۵۶۰۰ MB Eindhoven, The Netherlands.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alatorre, L., Beguería, S., & García-Ruiz, J. M. (۲۰۱۰). Regional ...
  • Bergant, A., Simpson, A. R., & Tijsseling, A. S. (۲۰۰۶). ...
  • Chikitkin, A. V., Rogov, B. V., & Utyuzhnikov, S. V. ...
  • El Idrissi, A. Q., da Silva, E. G., & Zeidan, ...
  • Ferras, D., Manso, P. A., Schleiss, A. J., & Covas, ...
  • Ferras, D., Manso, P. A., Schleiss, A. J., & Covas, ...
  • Ghodhbani, A., Akrout, M., & Haj Taieb, E. (۲۰۱۹). Coupled ...
  • Ghidaoui, M. S., & Karney, B. W. (۱۹۹۴). Equivalent differential ...
  • Ghidaoui, M. S., Karney, B. W., & McInnis, D. A. ...
  • Greyvenstein, G. P. (۲۰۰۲). An implicit method for the analysis ...
  • Henclik, S. (۲۰۱۸). Numerical modeling of water hammer with fluid–structure ...
  • Hosseini, R. S., Ahmadi, A., & Zanganeh, R. (۲۰۲۰). Fluid-structure ...
  • Hou, Q., Kruisbrink, A. C. H., Tijsseling, A. S., & ...
  • Karney, B. W., & Ghidaoui, M. S. (۱۹۹۷). Flexible discretization ...
  • Khalighi, F., Ahmadi, A., & Keramat, A. (۲۰۱۶). Investigation of ...
  • Khalighi, F., Ahmadi, A., & Keramat, A. (۲۰۱۷). Water hammer ...
  • Keramat, A., Tijsseling, A. S., Hou, Q., & Ahmadi, A. ...
  • Lai, C. (۱۹۸۸). Comprehensive method of characteristics models for flow ...
  • Laguna, A. J., & Tsouvalas, A. (۲۰۱۴). Transient laminar flow ...
  • Li, Q. S., Yang, K., & Zhang, L. (۲۰۰۳). Analytical ...
  • Lu, M., Liu, X., Xu, G., & Tian, Y. (۲۰۲۴). ...
  • Pal, S., Hanmaiahgari, P. R., & Karney, B. W. (۲۰۲۱). ...
  • Ramos, H., Tamminen, S., & Covas, D. I. C. (۲۰۰۹). ...
  • Samani, H. M. V., & Khayatzadeh, A. (۲۰۰۲). Transient flow ...
  • Shampine, L. F. (۲۰۰۴). Two-step Lax–Friedrichs method. Applied Mathematics Letters, ۱۸(۱۰), ...
  • Shampine, L. F. (۲۰۰۵). Solving hyperbolic PDEs in MATLAB. Applied Numerical ...
  • Shi, L., Zhang, J., Yu, X. D., Chen, S., Zhao, ...
  • Shimada, M., Brown, J., Leslie, D., & Vardy, A. (۲۰۰۶). ...
  • Thomas, J. W. (۱۹۹۵). Numerical partial differential equations: Finite difference methods (Vol. ...
  • Tijsseling, A. S. (۲۰۰۳). Exact solution of linear hyperbolic four ...
  • Tijsseling, A. S. (۲۰۰۹). Exact computation of the axial vibration ...
  • Trangenstein, J. A. (۲۰۰۹). Numerical solution of hyperbolic partial differential equations. ...
  • Twyman, J. (۲۰۱۶). Wave speed calculation for water hammer analysis. Obras ...
  • Twyman, J. (۲۰۱۷). Water hammer analysis using a hybrid scheme. Revista ...
  • Twyman, J. (۲۰۱۸). Water hammer analysis using an implicit finite ...
  • Urbanowicz, K. (۲۰۱۸). Fast and accurate modelling of frictional transient ...
  • Wan, W., Wang, Y., Chen, X., Zhan, H., Wang, T., ...
  • Wiggert, D. C., & Sundquist, M. J. (۱۹۹۷). Fixed-grid characteristics ...
  • Zhang, B., Wan, W., & Shi, M. (۲۰۱۸). Experimental and ...
  • Zhang, Q., Liao, T., Ding, L., Wang, K., Yang, H., ...
  • نمایش کامل مراجع