Modeling of Electrical Energy in Industrial Wastewater Treatment Plant with Traditional and Artificial Neural Network Approaches
محل انتشار: مجله مهندسی هیدرولیک و آب، دوره: 2، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 60
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHWE-2-1_008
تاریخ نمایه سازی: 3 اردیبهشت 1404
چکیده مقاله:
The rapid development of industries and the establishment of plenty of industrial parks have initiated several environmental issues during recent decades. The environmental standards and rules issued by the environmental organization for increasing the quality of the treated wastewater on the one hand and increasing the energy price on the other hand, have caused the energy management debate to be of particular importance. The main aim of energy management is to minimize the high energy consumption in industrial wastewater treatment plants (IWTP). In this paper, the electric power consumption of IWTP in Amol’s industrial park was measured by implementing both traditional and advanced methods (using artificial neural networks). In the first step, total energy consumption, involving energy used by flow or aeration pumps and mixers was calculated through an energy activity diagram, mathematical equations, and mass balances. In addition, linear regression equations for electrical energy consumption were estimated based on the amount of oxygen needed with an appropriate correlation coefficient. In the next step, a three-layer artificial neural network (ANN) with the Leonberg-Marquard training algorithm was employed. Various parameters, including COD, BOD, total phosphorus, total nitrogen, mixed liquor suspended solids (MLSS), and the flow rate (Q) were employed in ۴ models to predict the electrical energy consumption of IWTP. Results showed that COD, MLSS, and Q can be considered as the most important selective indices for the determination of energy consumption by which the highest correlation coefficient and the lowest error rate of ۰.۹۲۸ and ۰.۰۰۹۸ were obtained, respectively.
کلیدواژه ها:
Industrial wastewater treatment ، Electrical energy consumption ، Three-layer artificial neural network ، Energy Management
نویسندگان
Sahar Saghafi
Assistant Professor, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Mazandaran, Iran.
Tahere Taghizade Firozjaee
Assistant Professor, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.
Fatemeh Kardel
Associate Professor, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Mazandaran, Iran.
Sina Khoshnevisan
MSc. Student, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :