Sediment Grain Size Distribution under Quasi-Unsteady Flows through River Reaches
محل انتشار: مجله مهندسی هیدرولیک و آب، دوره: 2، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHWE-2-1_012
تاریخ نمایه سازی: 3 اردیبهشت 1404
چکیده مقاله:
This study explores the temporal and spatial dynamics of sediment transport and bed morphology under quasi-unsteady flow conditions, with an emphasis on the mean sediment grain size (d۵۰). The experiments were conducted in an ۱۸-meter-long, ۱-meter-wide, and ۱-meter-deep laboratory flume with a mixed sediment supply. Four sediment feeding scenarios were tested: no feed, constant feed, rising limb feed, and falling limb feed, under a symmetric hydrograph comprising seven flow stages. Each stage lasted one hour, with discharges ranging from ۵۰ to ۱۰۰ L/s. Data were collected to analyze temporal variations in d۵۰ and the influence of discharge on sediment sorting. Comparative analyses of sediment transport during rising and falling limbs revealed distinct behavioral patterns, with flow deceleration promoting deposition. Hysteresis loops highlighted temporal asymmetries between accelerating and decelerating flows, emphasizing the critical role of flow history in shaping bed composition. Bed stability assessments indicated that rapid discharge changes induce transient instability, evidenced by increased d۵۰ variability during abrupt transitions. However, the bed exhibited resilience as flow conditions stabilized. A linear regression model demonstrated the ability to estimate d۵۰ as a function of discharge and time, offering preliminary insights into sediment dynamics. However, limitations inherent to linear models- such as their inability to capture nonlinear interactions- suggest that advanced machine learning approaches could improve predictive accuracy. By integrating empirical analysis and predictive modeling, this study advances sediment forecasting capabilities under variable hydraulic conditions, providing valuable insights for river management and sediment transport processes.
کلیدواژه ها:
نویسندگان
Jafar Chabokpour
Associate Professor of Hydraulic Structures, Civil Engineering Department, University of Maragheh, Maragheh, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :