A Hybrid Methodology of Data Science and Decision Making Techniques: Lessons from COVID-۱۹ Pandemic Management

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 43

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEPR-36-1_007

تاریخ نمایه سازی: 31 فروردین 1404

چکیده مقاله:

Today, data mining and machine learning are recognized as tools for extracting knowledge from large datasets with diverse characteristics. With the increasing volume and complexity of information in various fields, decision-making has become more challenging for managers and decision-making units. Data Envelopment Analysis (DEA) is a tool that aids managers in measuring the efficiency of the units under their supervision. Another challenge for managers involves selecting and ranking options based on specific criteria. Choosing an appropriate multi-criteria decision-making (MCDM) technique is crucial in such cases. With the spread of COVID-۱۹ and the significant financial, economic, and human losses it caused, data mining has once again played a role in improving outcomes, predicting trends, and reducing these losses by identifying patterns in the data. This paper aims to assess and predict the efficiency of countries in preventing and treating COVID-۱۹ by combining DEA and MCDM models with machine learning models. By evaluating decision-making units and utilizing available data, decision-makers are better equipped to make effective decisions in this area. Computational results are presented in detail and discussed in depth.

نویسندگان

mehdi dadehbeigi

MSc Graduate, Department of Industrial Engineering, Faculty of Industrial and MechanicalEngineering, Qazvin branch, Islamic Azad University, Qazvin, Iran

ali taherinezhad

PhD Candidate, Department of Industrial Engineering, Faculty of Industrial and MechanicalEngineering, Qazvin branch, Islamic Azad University, Qazvin, Iran

alireza alinezhad

Associate Professor, Department of Industrial Engineering, Faculty of Industrial andMechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Lamers MM, Haagmans BL. SARS-CoV-۲ pathogenesis. Nature reviews microbiology. Vol. ...
  • Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, ...
  • Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-۱۹ pandemic: a ...
  • Worldometers. Reported Cases and Deaths by Country or Territory. (۲۰۲۴). ...
  • Alinezhad A, Sarrafha K, Amini A. Sensitivity analysis of SAW ...
  • Sarrafha K, Kazemi A, Alinezhad A. A multiobjective evolutionary approach ...
  • Alinezhad A, Khalili J. EDAS Method. New Methods and Applications ...
  • Alinezhad A, Khalili J. MABAC method. New methods and applications ...
  • Alinezhad A, Heidaryan L, Taherinezhad A. Ranking the Measurement System ...
  • Alinezhad A, Taherinezhad A. Control Chart Recognition Patterns Using Fuzzy ...
  • Taherinezhad A, Alinezhad A, Gholami S. An Application of Data ...
  • A Network Data Envelopment Analysis Approach for Efficiency Measurement of Poultry Industry Production Chains [مقاله ژورنالی]
  • Gupta GK. Introduction to data mining with case studies. PHI ...
  • Zhang Z, Xiao Y, Niu H. Dea and machine learning ...
  • Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning ...
  • Culaste HF, Torres NJ, Lachica ZP, Lorono HG, Inguillo RF, ...
  • نمایش کامل مراجع