A Hybrid Methodology of Data Science and Decision Making Techniques: Lessons from COVID-۱۹ Pandemic Management
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 43
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIEPR-36-1_007
تاریخ نمایه سازی: 31 فروردین 1404
چکیده مقاله:
Today, data mining and machine learning are recognized as tools for extracting knowledge from large datasets with diverse characteristics. With the increasing volume and complexity of information in various fields, decision-making has become more challenging for managers and decision-making units. Data Envelopment Analysis (DEA) is a tool that aids managers in measuring the efficiency of the units under their supervision. Another challenge for managers involves selecting and ranking options based on specific criteria. Choosing an appropriate multi-criteria decision-making (MCDM) technique is crucial in such cases. With the spread of COVID-۱۹ and the significant financial, economic, and human losses it caused, data mining has once again played a role in improving outcomes, predicting trends, and reducing these losses by identifying patterns in the data. This paper aims to assess and predict the efficiency of countries in preventing and treating COVID-۱۹ by combining DEA and MCDM models with machine learning models. By evaluating decision-making units and utilizing available data, decision-makers are better equipped to make effective decisions in this area. Computational results are presented in detail and discussed in depth.
کلیدواژه ها:
نویسندگان
mehdi dadehbeigi
MSc Graduate, Department of Industrial Engineering, Faculty of Industrial and MechanicalEngineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
ali taherinezhad
PhD Candidate, Department of Industrial Engineering, Faculty of Industrial and MechanicalEngineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
alireza alinezhad
Associate Professor, Department of Industrial Engineering, Faculty of Industrial andMechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :