Integrating Gradient Boosting and Parametric Architecture for Optimizing Energy Use Intensity in Net-Zero Energy Buildings

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-11-3_006

تاریخ نمایه سازی: 31 فروردین 1404

چکیده مقاله:

Achieving net-zero energy building (NZEB) status requires accurate energy use intensity (EUI) calculations, as conventional methods often fail to capture the complexity of design and climatic conditions. In this research, a parametric energy modeling approach was used to conduct ۱,۳۵۰ simulations and analyze the impact of design parameters on building EUI. These simulations covered six building types—an existing building and I-, L-, T-, U-, and H-shaped buildings—across eight locations in different climate zones. A case study was conducted in Busan, Korea, where on-site measurements were obtained using portable devices to validate the simulation results. I-shaped buildings exhibited the lowest EUI, reaching ۱۰۹ kWh/m²/yr at ۰° and ۱۸۰° orientations. The simulation results indicated that building orientations of ۱۴۰°, ۹۰°, ۱۳۵°, and ۲۷۰° tended to produce higher EUI values, whereas ۰° and ۱۸۰° showed lower EUI values of ۱۲۲ and ۱۲۳ kWh/m²/yr, respectively. The use of triple-pane insulated glass effectively reduced the I-shaped building's EUI to ۱۰۳ kWh/m²/yr. Implementing photovoltaic (PV) systems further reduced the EUI significantly, with the I-shaped building achieving an EUI of −۱۴ kWh/m²/yr at a ۲۰% PV efficiency. Analysis using an extreme gradient boosting (XGBoost) model revealed that the climate zone, PV area, and type of heating, ventilation, and air-conditioning system significantly affected the EUI. This model, processed using Colab, was highly effective, with an R-squared value of ۰.۹۹, a root mean square error of ۴.۵۷, and a mean absolute error of ۱.۹۹. These findings demonstrate that the XGBoost model can effectively capture complex data patterns and can be used for high-accuracy EUI estimation. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۵-۰۱۱-۰۳-۰۶ Full Text: PDF

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Almomani, A., Almeida, R. M. S. F., Vicente, R., & ...
  • Mehedhi, H., AMM, S. A., Mohammad Alamgir, H., & AMM, ...
  • Noh, Y., Jafarinejad, S., & Anand, P. (2024). A Review ...
  • Xiaoxiang, Q., Junjia, Y., Haron, N. A., Alias, A. H., ...
  • Hongvityakorn, B., Jaruwasupant, N., Khongphinitbunjong, K., & Aggarangsi, P. (2024). ...
  • Panchal, P., Mehta, V., Thakur, M., & Kumar, B. (2020). ...
  • Marszal, A. J., & Heiselberg, P. (2011). Life cycle cost ...
  • Chen, S. Y. (2019). Use of green building information modeling ...
  • Becchio, C., Corgnati, S. P., Vio, M., Crespi, G., Prendin, ...
  • Latief, Y., Berawi, M. A., Koesalamwardi, A. B., Sagita, L., ...
  • Moreno, B., Del Ama Gonzalo, F., Ferrandiz, J. A., Lauret, ...
  • Santos-Herrero, J. M., Lopez-Guede, J. M., & Flores-Abascal, I. (2021). ...
  • Mahiwal, S. G., Bhoi, M. K., & Bhatt, N. (2021). ...
  • Geng, Y., Lin, B., & Zhu, Y. (2020). Comparative study ...
  • Samadi, M., & Fattahi, J. (2021). Energy use intensity disaggregation ...
  • Raimo Simson, Kirsten Engelund Thomsen, Kim Bjarne Wittchen, & Jarek ...
  • Garcia, J. F., & Kranzl, L. (2018). Ambition levels of ...
  • Tabrizi, A. (2021). Sustainable Construction, LEED as a Green Rating ...
  • USGBC. (2025). LEED V4.1 Building Design and Construction. U.S. Green ...
  • Xia, B., Zuo, J., Skitmore, M., Pullen, S., & Chen, ...
  • DOEE. (2018). Green Building Report 2018. DC. Department of Energy ...
  • Tracy, W. H., Joy, S., Flora, Y., & Audrey, W. ...
  • Grainger, C., & Rattenbury, J. (2021). Net Zero New Buildings ...
  • IBEC. (2014). Japan Sustainable Building Consortium, CASBEE for Buildings (New ...
  • Portalatin, M., Roskoski, M., & Shouse, T. (2015). Sustainability How-to ...
  • Wang, N., Fowler, K. M., & Sullivan, R. S. (2012). ...
  • Robar, K. (2018). Comparative analysis study to compare LEED v4 ...
  • Vierra, S. (2018). Green Building Standards and Certification Systems. Whole ...
  • Lee, J., & Shepley, M. (2019). The green standard for ...
  • Kim, K. H., Chae, C. U., & Cho, D. (2022). ...
  • No, S., & Won, C. (2020). Comparative analysis of energy ...
  • Nahan, R. T. (2019). Architect’s Guide to Building Performance: Integrating ...
  • Suphavarophas, P., Wongmahasiri, R., Keonil, N., & Bunyarittikit, S. (2024). ...
  • Stevanović, S., Dashti, H., Milošević, M., Al-Yakoob, S., & Stevanović, ...
  • Lu, Y., Wu, W., Geng, X., Liu, Y., Zheng, H., ...
  • Labib, R. (2022). Integrating Machine Learning with Parametric Modeling Environments ...
  • Veiga, R. K., Veloso, A. C., Melo, A. P., & ...
  • Seyedzadeh, S., Pour Rahimian, F., Rastogi, P., & Glesk, I. ...
  • Amasyali, K., & El-Gohary, N. (2021). Machine learning for occupant-behavior-sensitive ...
  • Solmaz, A. S. (2020). Machine learning based optimization approach for ...
  • Guo, H., Duan, D., Yan, J., Ding, K., Xiang, F., ...
  • Barbaresi, A., Ceccarelli, M., Menichetti, G., Torreggiani, D., Tassinari, P., ...
  • Kumar, P., Kamalakshi, N., & Karthick, T. (2024). Towards Sustainable ...
  • Ni, Z., Zhang, C., Karlsson, M., & Gong, S. (2023). ...
  • Gan, H., & Gao, W. (2024). Ensemble machine learning for ...
  • Abdelsattar, M., Ismeil, M. A., Azim Zayed, M. M. A., ...
  • Barbur, V. A., Montgomery, D. C., & Peck, E. A. ...
  • Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the ...
  • Breiman, L. (2001). Machine Learning, 45(1), 5–32. doi:10.1023/a:1010933404324. ...
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting ...
  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on ...
  • نمایش کامل مراجع