Hybrid Koopman-neural network approach for robust parameter estimation and prediction in duffing oscillators
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 51
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TAVA-10-1_002
تاریخ نمایه سازی: 31 فروردین 1404
چکیده مقاله:
Nonlinear dynamical system research is essential in science and engineering because it could be potentially employed to represent real-world phenomena. Traditional methods rely on pre-defined models or computationally expensive simulations, limiting their applicability to only numerical data. In the present research, without any prior knowledge of the system, we suggest a novel way to build a linear representation of the Duffing oscillator by fusing the capabilities of deep neural networks with the Koopman operator. This recently established methodology makes it easier to estimate system parameters effectively and accurately predict the oscillator's future behavior. Our approach incorporates a modified training procedure that restricts the Koopman operator to a single linear layer within the neural network, improving interpretability and potentially reducing training complexity. This methodology not only simplifies nonlinear system analysis but also paves the way for advancements in predictive modeling across various fields. Notably, our method yields distinctive eigenvalues of the Koopman generator matrix, enabling the Koopman operator to exhibit robustness against noise and capture a spectrum of Duffing equation behaviors. This includes the precise prediction of periodic oscillations and the capturing of period-doubling bifurcation, all while maintaining tractability within the neural network framework.
کلیدواژه ها:
نویسندگان
Yassin Riyazi
M.Sc. Student, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Navidreza Ghanbari
Assistant Professor, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
Arash Bahrami
Assistant Professor, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :