AI-based Helmet Detection for Motorcycle Drivers: Isfahan Traffic Control Center Case Study

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AITC01_001

تاریخ نمایه سازی: 30 فروردین 1404

چکیده مقاله:

Helmet detection is crucial for enhancing motorcycle rider safety and enforcing traffic regulations. In this study, we fine-tune YOLO۹, a state-of-the-art object detection model, on a custom dataset collected from the Isfahan Traffic Control Center to improve helmet detection accuracy. The proposed model demonstrates enhanced performance compared to the original YOLO۹, achieving higher precision (۷۵.۱% vs. ۷۳.۵%), recall (۷۰% vs. ۶۷%), mAP@۰.۵ (۷۲.۶% vs. ۶۹.۵%), and mAP@۰.۵:۰.۹۵ (۶۰.۹% vs. ۵۷%). A qualitative analysis further supports these findings, highlighting the model's robustness across different lighting conditions, viewing angles, and helmet types while identifying challenges related to occlusion and false detections. The results confirm the effectiveness of fine-tuning YOLO۹ for real-world helmet detection applications.

نویسندگان

Ali-Asghar Zare

Traffic police (RAHVAR), Isfahan province, Iran

Mahdi Salman

Traffic police (RAHVAR), Isfahan province, Iran