Application of general Lagrange scaling functions for evaluating the approximate solution time-fractional diffusion-wave equations

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 51

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-13-2_007

تاریخ نمایه سازی: 27 فروردین 1404

چکیده مقاله:

This manuscript provides an efficient technique for solving time-fractional diffusion-wave equations using general Lagrange scaling functions (GLSFs). In GLSFs, by selecting various nodes of Lagrange polynomials, we get various kinds of orthogonal or non-orthogonal Lagrange scaling functions. The general Riemann-Liouville fractional integral operator (GRLFIO) of GLSFs is obtained generally. General Riemann-Liouville fractional integral operator of the general Lagrange scaling function is calculated exactly using the Hypergeometric functions. The operator extraction method is precisely calculated and this has a direct impact on the accuracy of our method. The operator and optimization method are implemented to convert the problem to a set of algebraic equations. Also, error analysis is discussed. To demonstrate the efficiency of the numerical scheme, some numerical examples are examined.

کلیدواژه ها:

time-fractional diffusion-wave equation ، general Riemann-Liouville pseudo-operational matrix ، Optimization method ، General Lagrange scaling function

نویسندگان

Sedigheh Sabermahani

Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.

Yadollah Ordokhani

Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.

Praveen Agarwal

۱.Department of Mathematics, Anand International College of Engineering, Jaipur ۳۰۳۰۱۲, Rajesthan, India. ۲. Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE. ۳. International Center for Basic and Applied Sciences, Jaipur,