Research Article: Artificial intelligence models for identifying several fish species based on otolith morphology index analysis from nearshore areas of Vietnam

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 5

فایل این مقاله در 28 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JIFRO-24-2_007

تاریخ نمایه سازی: 26 فروردین 1404

چکیده مقاله:

Fish species can be identified based on the analysis of morphological indices including basic dimension parameters and shape index. Several pattern recognition methods have been proposed to classify fish species through the morphological characteristics of otolith outlines. Machine learning methods have been applied in various fields, particularly in the differentiation of object shapes. Applying machine learning models to identify species based on basic dimension parameters and shape index of otoliths is highly promising. The purpose of this study is to apply machine learning models to classify marine fish species, aiming to determine which machine learning model and indices are suitable for otolith shape classification. A total of ۷۲۰ samples of left otoliths (sagittae) from ۱۲ fish species, with ۶۰ individuals per species, were used to develop and evaluate the identification model using Python language. For the first time, a comparative evaluation of six machine learning models and three deep learning models was conducted to distinguish ۱۲ fish species in the nearshore areas of northern and central Vietnam. The results of this study have identified machine learning and deep learning models based on high-performing basic dimension parameter (BDP) and/or shape index ShI indices for species identification. This lays the groundwork for developing software for automatic species or population identification based on otolith morphological analysis.

نویسندگان

Q.T. Vu

Joint Vietnam-Russia Tropical Science and Technology Research Center

T.D. Pham

Joint Vietnam-Russia Tropical Science and Technology Research Center

V.Q. Nguyen

Vietnam Academy of Science and Technology, Hanoi, Vietnam

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Agüera, A. and Deirdre, B., ۲۰۱۱. Use of sagittal otolith ...
  • Burke, N., Brophy, D., Schön, P. J. and King, P.A., ...
  • Chen, Y. and Zhu, G., ۲۰۲۳. Using machine learning to ...
  • Ferhani, K., Bekrattou, D. and Mouffok, S., ۲۰۲۱. Inter-population morphological ...
  • Friedman, J. H., ۲۰۰۱. Greedy function approximation: A gradient boosting ...
  • Froese, R. and Pauly, D., ۲۰۲۲. FishBase - World Wide ...
  • Geurts, P., Ernst, D. and Wehenkel, L., ۲۰۰۶. Extremely randomized ...
  • He, T., Cheng, J., Qin, J. G., Li, Y. and ...
  • Liu, J., Wang, H. and Zhao, X., ۲۰۲۱. Deep learning ...
  • Use of otolithic morphometrics and ultrastructure for comparing between three goatfish species (family: Mullidae) from the northern Red Sea, Hurghada, Egypt [مقاله ژورنالی]
  • Paul, K., Oeberst, R. and Hammer, C., ۲۰۱۳. Evaluation of ...
  • Portnoy, D. S. and Gold, J. R., ۲۰۱۳. Finding geographic ...
  • Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A.A., Fatemi, M.R., ...
  • Salimi, N., Loh, K. H., Kaur Dhillon, S. and Chong, ...
  • Solomatine, D. P. and Shrestha, D. L., ۲۰۰۴. AdaBoost. RT: ...
  • Stransky, C., ۲۰۰۵. Geographic variation of golden redfish (Sebastes marinus) ...
  • Yedier, S., ۲۰۲۱. Otolith shape analysis and relationships between total ...
  • نمایش کامل مراجع