Fire and Smoke Segmentation using FireNet Combined with UNet۳+

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 121

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-10_012

تاریخ نمایه سازی: 26 فروردین 1404

چکیده مقاله:

Fire is a major hazard in sensitive environments and can cause irreparable financial and life losses. In addition, fire in the forest and residential areas is considered a threatening event for natural and human resources. Accordingly, detecting fires and smoke in a timely and accurate manner is crucial in preventing financial losses, injuries, and fatalities. Since smoke can be detected before visible flames, smoke detection is a critical component of many fire alarm systems. Sensors sensitive to smoke and fire have the ability to detect these two events, but implementing a huge network of sensors in an open space like a forest is not economical. There are various methods for detecting fire and smoke, and among these, the methods based on deep learning exhibit bigger advantages in terms of accuracy and speed in segmentation. In this paper, we proposed some deep neural networks for fire and smoke detection. These are based on UNet, UNet++, and UNet۳+. A proposed FireNet and five other structures are tried as the encoder’s backbone to segment fire and smoke. To train the models, ۱۲۰۰ images gathered from Internet images and videos were prepared, with appropriate labels for smoke and fire applied to their pixels. Experiments show that the best IoU (۸۸.۳۳%) is achieved by UNet++ with EfficientNet.B۰ backbone. In small-scale fires, UNet with FireNet has the best performance, and when computational cost is important, UNet۳+ with FireNet as the encoder’s backbone is the optimal choice.

نویسندگان

A. Eskandari

Faculty of Electrical Engineering, Shahrood University of Technology, Daneshgah Blvd., Shahrood, Iran

H. Khosravi

Faculty of Electrical Engineering, Shahrood University of Technology, Daneshgah Blvd., Shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :