Semantic Segmentation Using an Improved ResNet Structure and Efficient Channel Attention Mechanism Applied to Atrous Spatial Pyramid Pooling in a Fully Convolutional Network

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 20

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-11_004

تاریخ نمایه سازی: 26 فروردین 1404

چکیده مقاله:

In the field of computer vision, semantic segmentation became an important problem that has applications in fields such as autonomous driving and robotics. Image segmentation datasets, on the other hand, present substantial hurdles due to the high intra-class variability, which includes differences across car models or building designs, and the low inter-class variability, which makes it difficult to discern between objects such as buildings that have facades that are visually identical. A focus-enhanced ASPP module that is coupled with an upgraded backbone for semantic segmentation networks is presented in this study as a solution to the problems that have been identified. In order to augment the adaptability of extracted features, the proposed framework utilizes the capability of an attention ASPP module to implement attention processes within the multiscale module. In order to efficiently capture complex features, the encoder stage also makes use of a ResNet-۵۰ backbone that has been properly optimized. In addition, to increase the robustness of the model, data augmentation approaches are applied. mDice of ۸۷.۸۲, mIoU of ۷۹.۰۵, and mean accuracy of ۸۵.۲ on the Stanford dataset, and mDice of ۸۸.۹۱, mIoU of ۸۰.۰۳, and mean accuracy of ۸۹.۸۴ on the Cityscapes dataset, according to experimental assessments, demonstrate that the developed technique performs at an accuracy level that is believed to be modern. As a result of these findings, the possibility for greatly improving semantic segmentation performance may be highlighted by integrating attention mechanisms, ASPP modules, and upgraded ResNet structures.

کلیدواژه ها:

نویسندگان

E. Sahragard

Department of Electrical and Computer Engineering University of Birjand, Birjand, Iran

H. Farsi

Department of Electrical and Computer Engineering University of Birjand, Birjand, Iran

S. Mohamadzadeh

Department of Electrical and Computer Engineering University of Birjand, Birjand, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sakimalla G, Chilukuri P, Jamuna A. Picture Segmentation using changing ...
  • Sezavar A, Farsi H, Mohamadzadeh S. A New Model for ...
  • Rohani M, Farsi H, Mohamadzadeh S. Facial Feature Recognition with ...
  • Ataee A, Kazemitabar J, Najafi M. A Framework for Dry ...
  • Farsi H, Ghermezi D, Barati A, Mohamadzadeh S. Improving Deep ...
  • Farsi H, Noursoleimani S, Mohamadzadeh S, Barati A. Multimodal Biomedical ...
  • Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep ...
  • Imani M. Deep Learning Based Electricity Demand Forecasting in Different ...
  • Sahragard E, Farsi H, Mohammadzadeh S. Image Restoration by Variable ...
  • Sahragard E, Farsi H, editors. Variable decomposition in total variant ...
  • Prakash S, Shah P, Agrawal A. Exploiting CNNs for Semantic ...
  • Lauziere AN. Combinatorial Optimization Algorithms for Hypergraph Matching with Application ...
  • Zhao J, Mao X, Chen L. Speech emotion recognition using ...
  • Zagoruyko S, Komodakis N. Wide residual networks. arXiv preprint arXiv:۱۶۰۵۰۷۱۴۶. ...
  • Wu Z, Shen C, Van Den Hengel A. Wider or ...
  • Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional networks ...
  • Peng C, Zhang X, Yu G, Luo G, Sun J, ...
  • Takikawa T, Acuna D, Jampani V, Fidler S, editors. Gated-scnn: ...
  • Krähenbühl P, Koltun V. Efficient inference in fully connected crfs ...
  • Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. ...
  • Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H, ...
  • Nogueira K, Dalla Mura M, Chanussot J, Schwartz WR, Dos ...
  • Mou L, Hua Y, Zhu XX. Relation matters: Relational context-aware ...
  • Zhou F, Hang R, Liu Q. Class-guided feature decoupling network ...
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale ...
  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, ...
  • He K, Zhang X, Ren S, Sun J, editors. Deep ...
  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, ...
  • Huang G, Liu S, Van der Maaten L, Weinberger KQ, ...
  • Long J, Shelhamer E, Darrell T, editors. Fully convolutional networks ...
  • Qiu X. U-Net-ASPP: U-Net based on atrous spatial pyramid pooling ...
  • Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: Redesigning ...
  • Zhao H, Shi J, Qi X, Wang X, Jia J, ...
  • Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, ...
  • Huang Z, Wang X, Huang L, Huang C, Wei Y, ...
  • Fu J, Liu J, Tian H, Li Y, Bao Y, ...
  • Fan L, Kong H, Wang W-C, Yan J. Semantic segmentation ...
  • Liu Z, Lin Y, Cao Y, Hu H, Wei Y, ...
  • Chen J, Lu Y, Yu Q, Luo X, Adeli E, ...
  • Hamidi H. A model for impact of organizational project benefits ...
  • Asadi Saeed Abad F, Hamidi H. An architecture for security ...
  • Hamidi H, Vafaei A, Monadjemi A. A framework for fault ...
  • Mohammadi A, Hamidi H. Analysis and evaluation of privacy protection ...
  • Fooladi S, Farsi H, Mohamadzadeh S. Segmenting the lesion area ...
  • Dey A, Biswas S, Abualigah L. Umpire’s Signal Recognition in ...
  • Azhar M, Ullah M, Imran AS, Yamin MM, Daudpota SM, ...
  • Mou L, Hua Y, Zhu XX, editors. A relation-augmented fully ...
  • Zhou Q, Wu X, Zhang S, Kang B, Ge Z, ...
  • Liu B, Gould S, Koller D, editors. Single image depth ...
  • Zhou D, Fang J, Song X, Guan C, Yin J, ...
  • Wu K, Du B, Luo M, Wen H, Shen Y, ...
  • نمایش کامل مراجع