Detection of Ore Type in Drilling Cores Using Machine Vision Algorithm
محل انتشار: مجله معدن و محیط زیست، دوره: 16، شماره: 3
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-16-3_002
تاریخ نمایه سازی: 26 فروردین 1404
چکیده مقاله:
Mineral reserve evaluation and ore type detection using data from exploratory boreholes are critical in mine design and extraction. However, preparing core samples and conducting chemical and physical tests is a time-consuming and costly procedure, slowing down the modeling process. This paper presents a novel Deep Learning (DL)-based model to recognize the types of kaolinite samples. For this purpose, a dataset containing the images of drilled cores and their types determined from conventional chemical and physical analyses was used. Eight Convolutional Neural Network (CNN) topologies based on individual features were developed, named A, B, C, D, E, F, G, and H. Six of the eight proposed CNN topologies described above had accuracy below ۸۰%, whereas two of them, model A and H, had higher accuracy than other topologies. Due to their similarity in results, both of them analyzed deeply. Model A was more efficient, with ۹۰% accuracy, than model B, with ۸۴% accuracy. Furthermore, the class detection performance of model A was further evaluated using different indices, including precision, recall, and F۱-score, which resulted in values of ۹۲%, ۹۲%, and ۹۰%, respectively, which are acceptable accuracies to identify the type of samples when using this approach on six different types of kaolinite.
کلیدواژه ها:
نویسندگان
Pouya Nobahar
ARC Training Centre for Integrated Operations for Complex Resources, The University of Adelaide, Adelaide, Australia
Yashar Pourrahimian
School of Mining and Petroleum Engineering, University of Alberta, Canada
Roohollah Shirani Faradonbeh
WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Australia
Fereydoun Mollaei Koshki
Iran China Clay Industry Co., Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :