Investigating the Applicability of Stacked Generalization Technique for the Prediction of Hard Rock Pillar Stability Status

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 31

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-16-3_007

تاریخ نمایه سازی: 26 فروردین 1404

چکیده مقاله:

The underground mining operations at the Obuasi Gold Mine rely heavily on the stability of hard rock pillars for safety and productivity. The traditional empirical and numerical methods for predicting pillar stability have limitations, prompting the exploration of advanced machine learning techniques. Hence, this work investigates the applicability of stacked generalisation techniques for predicting the stability status of hard rock pillars in underground mines. Four stacked models were developed, using Gradient Boosting Decision Trees (GBDTs), Random Forest (RF), Extra Trees (ET), and Light Gradient Boosting Machines (LightGBMs), with each model taking turns as the meta-learner, while the remaining three models acted as the base learners in each case. The models were trained and tested on a dataset of ۲۰۱ pillar cases from the AngloGold Ashanti Obuasi Mine in Ghana. Model performance was evaluated using classification metrics, including accuracy, precision, recall, F۱-score and Matthews Correlation Coefficient (MCC). The RF-stacked model demonstrated the best overall performance, achieving an accuracy of ۹۳.۴۴%, precision of ۹۴.۲۷%, recall of ۹۳.۴۴%, F۱-score of ۹۳.۵۹%, and MCC of ۸۸.۹۰%. Feature importance analysis revealed pillar depth and pillar stress as the most influential factors affecting pillar stability prediction. The results indicate that stacked generalisation techniques, particularly the RF-stacked model, offer promising capabilities for predicting hard rock pillar stability in underground mining operations.

نویسندگان

Festus Kunkyin-Saadaari

Faculty of Mining & Minerals Technology, Mining Eng, University of Mines and Technology, Tarkwa, Ghana

Jude Offei

Faculty of Mining & Minerals Technology, Mining Eng, University of Mines and Technology, Tarkwa, Ghana

Sadique Sadique

Faculty of Mining & Minerals Technology, Mining Eng, University of Mines and Technology, Tarkwa, Ghana

Victor Agadzie

Faculty of Mining & Minerals Technology, Mining Eng, University of Mines and Technology, Tarkwa, Ghana

Ishamel Forson

Faculty of Mining & Minerals Technology, Mining Eng, University of Mines and Technology, Tarkwa, Ghana

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Yu, Y., Deng, K. Z., & Chen, S. E. ...
  • . Kadkhodaei, M. H., Ghasemi, E., Zhou, J., & Zahraei, ...
  • . Wessels, D. G., & Malan, D. F. (۲۰۲۳). A ...
  • . Martin, C. D., & Maybee, W. G. (۲۰۰۰). The ...
  • . Bieniawski, Z. T., & Van Heerden, W. L. (۱۹۷۵). ...
  • . York, G. (۱۹۹۸). Numerical modelling of the yielding of ...
  • . Hustrulid, W. (۱۹۷۶). A review of coal pillar strength ...
  • . Hoek, E., & Brown, E. T. (۱۹۸۰). Underground Excavations ...
  • . Salamon, A., & Munro, M. (۱۹۶۷). A study of ...
  • . Hedley, D. G. F., & Grant, F. (۱۹۷۲). Stope-and-pillar ...
  • . Bieniawski, Z. T. (۱۹۶۸). The effect of specimen size ...
  • . Zhou, J., Li, X., & Mitri, H.S. (۲۰۱۵). Comparative ...
  • . Ahmad, M., Al-Shayea, N.A., Tang, X. W., Jamal, A., ...
  • . Zhou, J., Chen, Y., Chen, H., Khandelwal, M., Monjezi, ...
  • . Li, X., Kim, E., & Walton, G. (۲۰۱۹). A ...
  • . Jaiswal, A., Sharma, S. K., & Shrivastva, B. K. ...
  • . Ahmed, S. S., Gunzburger, Y., Renaud, V., & AlHeib, ...
  • . Li, X., Kim, E., & Walton, G. (۲۰۱۹). A ...
  • . Li, C., Zhou, J., Armaghani, D. J., & Li, ...
  • . Salih, A., & Abdul Hussein, H. (۲۰۲۲). Lost circulation ...
  • . Nilsson, J. N. (۲۰۰۵). Introduction to machine learning. Department ...
  • . Tawadrous, A. S., & Katsabanis, P. D. (۲۰۰۷). Prediction ...
  • . Ding, H., Li, G., Dong, X., Lin, Y. (۲۰۱۸). ...
  • . Wolpert, D.H. (۱۹۹۲). Stacked Generalisation. Neural Networks. ۵(۲), ۲۴۱-۲۵۹ ...
  • . Breiman, L. (۱۹۹۶). Bagging predictors. Machine learning, ۲۴(۲), ۱۲۳–۱۴۰ ...
  • . Smyth, P., & Wolpert, D. (۱۹۹۷). Stacked Density Estimation. ...
  • . Li, Q., Wu, Z., Wen, Z., & He, B. ...
  • . Ke, G., Meng, Q., Finley, T., Wang, T., Chen, ...
  • . Fafalios, S., Charonyktakis, P., Tsamardinos, I. (۲۰۲۰). Gradient Boosting ...
  • . Liang, W., Luo, S., Zhao, G., & Wu, H. ...
  • . Zhang, Z., & Jung, C. (۲۰۱۹). GBDT-MO: Gradient boosted ...
  • . Eslami, E., Salman, A.K., Choi, Y., Sayeed, A., & ...
  • . Ghazwani, M., & Begum, M.Y. (۲۰۲۳). Computational intelligence modelling ...
  • . Schonlau, M., & Zou, R.Y. (۲۰۲۰). The random forest ...
  • . Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. ...
  • . Chen, T., Xu, J., Ying, H., Chen, X., Feng, ...
  • . Dietterich, T.G. (۲۰۰۰). Ensemble Methods in Machine Learning. International ...
  • . Freund, Y., & Schapire, R.E. (۱۹۹۷). A decision-theoretic generalisation ...
  • . van der Laan, M., Polley, E., & Hubbard, A. ...
  • نمایش کامل مراجع