Categorization of Mineral Resources using Random Forest Model in a Copper Deposit in Peru

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 78

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-16-3_009

تاریخ نمایه سازی: 26 فروردین 1404

چکیده مقاله:

This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of ۳۱۸,۴۴۳ blocks were classified using geostatistical and geometric variables derived from Ordinary Kriging (OK) such as kriging variance, sample distance, number of drillholes, and geological confidence. The model was trained and validated using precision, recall, and F۱-score metrics. The results indicated an overall accuracy of ۹۷%, with the measured category achieving ۹۸% precision and an F۱-score of ۰.۹۸. The total estimated tonnage was ۵,۸۵۹.۳۶ Mt, distributed as follows: ۱,۴۴۶.۱۳ Mt (measured), ۲,۲۴۹.۲۲ Mt (Indicated), and ۲,۱۶۴.۰۱ Mt (Inferred), with average copper grades of ۰.۴۳%, ۰.۳۳%, and ۰.۳۱% Cu, respectively. Compared to the traditional geostatistical methods, this hybrid approach improves classification objectivity, spatial continuity, and reproducibility, minimizing abrupt transitions between categories. The RF model proved to be a robust tool, reducing classification inconsistencies and better capturing geological uncertainty. Future studies should explore hybrid models (K-means with RF, ANN with K-Prototypes, gradient boosting, and deep learning) and incorporate economic variables to optimize decision-making in resource estimation.

نویسندگان

Marco Cotrina-Teatino

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

Jairo Marquina-Araujo

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

Jose Mamani-Quispe

Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru

Solio Arango-Retamozo

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

Johnny Ccatamayo-Barrios

Department of Mining Engineering, Universidad Nacional San Cristobal de Huamanga, Ayacucho, Peru

Joe Gonzalez-Vasquez

Department of Industrial Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

Teofilo Donaires-Flores

Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru

Maxgabriel Calla-Huayapa

Faculty of Industrial Process Engineering, National University of Juliaca, Juliaca, Peru

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . JORC Code. (۲۰۱۲). Australasian code for reporting of exploration ...
  • . CIM. (۲۰۱۹). Estimation of mineral resources & mineral reserves ...
  • . SAMREC. (۲۰۱۶). The South African code for the reporting ...
  • . CRIRSCO. (۲۰۱۴). International Reporting Template for the Public Reporting ...
  • . Stephenson, P., Stoker, P. (۲۰۰۱). Mineral resource and ore ...
  • . Abzalov, M. (۲۰۱۶). Methodology of the mineral resource classification. ...
  • . Owusu, S. (۲۰۱۹). Critical Review of Mineral Resource Classification ...
  • . Coombes, J., Fahey, G., Stoker, P. (۲۰۱۴). Overview – ...
  • . Menin, R., Diedrich, C., Reuwsaat, JD., De Paula, WF. ...
  • . Deustch, C., Leauangthong, O., Ortiz, J. (۲۰۰۷). Case for ...
  • . Mucha, J., Wasilewska-Błaszczyk, M., Augus̈cik, J. (۲۰۱۵). Categorization of ...
  • . Nowak, M., Leuangthong, O. (۲۰۱۹). Optimal drill hole spacing ...
  • . Taghvaeenezhad, M., Shayestehfar, M., Moarefvand, P., Rezaei, A. (۲۰۲۰). ...
  • . Emery, X., Ortiz, JM., Rodríguez, JJ. (۲۰۰۶). Quantifying uncertainty ...
  • . Madani, N. (۲۰۲۰). Mineral resource classification based on uncertainty ...
  • . Silva, DSF., Boisvert, JB. (۲۰۱۴). Mineral resource classification: A ...
  • . Isatelle, F., Rivoirard, J. (۲۰۱۹). Mineral Resources classification of ...
  • . Rocha, V., Bassani, MA. (۲۰۲۳). Practical application of a ...
  • . Dominy, S., Stephenson, P., Annels, A. (۲۰۰۱). Classification and ...
  • . Stephenson, PR., Allman, A., Carville, DP., Stoker, PT., Mokos, ...
  • . Verly, G., Parker, HM. (۲۰۲۱). Conditional Simulation for Mineral ...
  • . Galetakis, M., Vasileiou, A., Rogdaki, A., Deligiorgis, V., Raka, ...
  • . Singh, T., Jhariya, DC., Sahu, M., Dewangan, P., Dhekne, ...
  • . Hernández, H. (۲۰۲۴). A semiautomatic multi criteria method for ...
  • . Afzal, P., Gholami, H., Madani, N., Yasrebi, A., Sadeghi, ...
  • . Battalgazy, N., Madani, N. (۲۰۱۹). Categorization of mineral resources ...
  • . Farhadi, S., Tatullo, S., Boveiri Konari, M., Afzal, P. ...
  • . Afzal, P., Farhadi, S., Konari, MB., Meigoony, MS., Saein, ...
  • . Nwaila, GT., Zhang, SE., Bourdeau, JE., Frimmel, HE., Ghorbani, ...
  • . Salarian, S., Oskooi, B., Mostafaei, K., Smirnov, MY. (۲۰۲۴). ...
  • . Cevik, IS., Leuangthong, O., Caté, A., Ortiz, JM. (۲۰۲۱). ...
  • . Ribeiro, DT., Filho, CGM., de Souza, LE., Costa, JFCL., ...
  • . Huang, Z. (۱۹۹۸). Extensions to the k-means algorithm for ...
  • . Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, ...
  • . van der Walt, S., Colbert, SC., Varoquaux, G. (۲۰۱۱). ...
  • . Álvarez Cid-Fuentes, J., Álvarez, P., Amela, R., Ishii, K., ...
  • . Ahsan, M., Mahmud, M., Saha, P., Gupta, K., Siddique, ...
  • Predicting Open Pit Mine Production using Machine Learning Techniques: A Case Study in Peru [مقاله ژورنالی]
  • . Wackernagel, H. (۲۰۰۳). Ordinary Kriging. In: Multivariate Geostatistics. Springer ...
  • . Journel, AG. (۱۹۸۳). Nonparametric estimation of spatial distributions. Journal ...
  • Copper Ore Grade Prediction using Machine Learning Techniques in a Copper Deposit [مقاله ژورنالی]
  • . Okwu, MO., Otanocha, OB., Edward, BA., Oreko, BU., Oyekale, ...
  • . Marquina-Araujo, JJ., Cotrina-Teatino, MA., Cruz-Galvez, JA., Noriega-Vidal, EM., Vega-Gonzalez, ...
  • . Carranza, EJM., Laborte, AG. (۲۰۱۵). Random forest predictive modeling ...
  • . Josso, P., Hall, A., Williams, C., Le Bas, T., ...
  • . Ford, A. (۲۰۲۰). Practical Implementation of Random Forest-Based Mineral ...
  • . Lachaud, A., Adam, M., Mišković, I. (۲۰۲۳). Comparative Study ...
  • . Markoulidakis, I., Markoulidakis, G. (۲۰۲۴). Probabilistic Confusion Matrix: A ...
  • . Caelen, O. (۲۰۱۷). A Bayesian interpretation of the confusion ...
  • نمایش کامل مراجع