Contractive Fixed Points in a Rectangular Metric Space and Applications

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_SCMA-22-2_003

تاریخ نمایه سازی: 24 فروردین 1404

چکیده مقاله:

Branciari (۲۰۰۰) introduced the notion of a rectangular metric space ({\it rms})  as a generalization of a metric space and proved the well-known Banach's contraction mapping theorem in an {\it rms}, which was further generalized by Sarma et al. (۲۰۰۹) through a Ciric contraction. A fixed point p of a self-map f is a contractive fixed point (Edelstein, ۱۹۶۲), provided all the Picard's iterates x,fx,f^۲x, \ldots converge to p. In the first part of the paper, contractive fixed points of Banach and Ciric contractions are established in a rectangular metric space. Usually, it is shown that an appropriate Picard's iterative sequence with an arbitrary seed converges to a point, which is a unique fixed point. Rather than relying on the standard iterative procedure, in the next part of the paper, unique fixed points are obtained for Banach, Hardy-Roger and Ciric's contractions in a rectangular metric space through the rectangle inequality and the greatest lower bound property of real numbers. In the last part of the paper, two elegant problems of Volterra integral equations are presented with the necessary MATLAB interpretation.

نویسندگان

G Shanmuga Sundari

Department of Mathematics, Vellore Institute of Technology, Vellore-۶۳۲ ۰۱۴, Tamil Nadu, India.

T Phaneendra

Department of Mathematics, Vellore Institute of Technology, Vellore-۶۳۲ ۰۱۴, Tamil Nadu, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • I.A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. ...
  • A. Branciari, A fixed point theorem of Banach-Caccioppoli type on ...
  • Lj. B. Ciric, Fixed point theorems for mappings with a ...
  • Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. ...
  • M. Edelstein, On fixed and periodic points under contractive mappings, ...
  • S. Gahler, ۲-metrische Raume und ihre topologische Struktur, Math. Nachr., ...
  • J.E. Joseph and M.H. Kwack, Alternative approaches to proofs of ...
  • K. Kumara Swamy and T. Phaneendra, Another proof of Mohantas ...
  • K. Kumara Swamy and T. Phaneendra, Fixed point of ۲-contraction ...
  • Kreyszig, Introductory Functional Analysis with Applications, Wiley Classics Library Edition ...
  • B.K. Lahiri and P. Das, Fixed point of a Ljubomir ...
  • Z. Mustafa and B. Sims, A new approach to generalized ...
  • T. Phaneendra and K. Kumara Swamy, A Unique Common Fixed ...
  • T. Phaneendra and K. Kumara Swamy, Unique fixed point in ...
  • T. Phaneendra, Banach and Kannan contraction on S-metric space, Ital. ...
  • T. Phaneendra and K. Kumara Swamy, Some elegant proofs in ...
  • T. Phaneendra and K. Kumara Swamy, Fixed points of Chatterjea ...
  • T. Phaneendra and S. Saravanan, On Some Misconceptions and Chatterjee-type ...
  • T. Phaneendra and S. Saravanan, On G-contractive fixed points,Jnanabha, ۴۶ ...
  • T. Phaneendra and S. Saravanan, Fixed point under general contractions ...
  • S. Saravanan and T. Phaneendra, Fixed Point as a G-contractive ...
  • I.R. Sarma, J.M. Rao and S.S. Rao, Contractions over generalized ...
  • Sh. Sedghi, N. Shobe and A. Aliouche, A generalization of ...
  • S.C. Sihombing and L. Lia, Fixed point theorem on Volterra ...
  • P. Swapna and T. Phaneendra, Generalized fixed point theorems in ...
  • W. Rudin, Principles of Mathematical Anal ...
  • نمایش کامل مراجع