Dynamics prediction of land use changes using cellular automata and artificial neural network modeling

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GJESM-11-2_004

تاریخ نمایه سازی: 22 فروردین 1404

چکیده مقاله:

BACKGROUND AND OBJECTIVES: Land use change has become one of the main issues in environmental studies and sustainable development at the global level. Although several studies have explored land use change at the regional level, an in-depth understanding of the patterns and drivers of land use change in Pakpak Bharat Regency, North Sumatra, Indonesia, is still very limited. To date, no predictive model can provide long-term insights into land use change trends in the region. The gap in data and analysis can hamper the formulation of effective and sustainable spatial planning policies. Therefore, the study specifically addressing this issue is needed to provide a relevant scientific framework to guide decision-making.METHODS: The study used spatial analysis with cellular automata-artificial neural network or modeling to project and predict land use changes in Pakpak Bharat Regency in ۲۰۳۰. Geographic information system with the Molusce plugin were utilized in this study. The analysis consisted of two stages, namely land use interpretation and land use projection modeling. Primary data was obtained from the field (for soil) and interviews (for the economy) to determine the leading regional commodity. In contrast, secondary data on agroclimate suitability comprised altitude, air temperature data, air humidity, rainfall, wind speed, and duration of sunlight.FINDINGS: Land uses that tended to expand were for plantations/gardens, settlement areas, and Shrubs. Meanwhile, rice fields and mixed vegetation tended to experience a reduction in area over the years. Forest land use tended to fluctuate, increasing in ۲۰۱۸ but decreasing in ۲۰۲۲. Furthermore, the land use prediction for ۲۰۳۰ in Pakpak Bharat Regency showed that land use for forests, rice fields, and Shrubs decreased. On the other hand, land use for plantations, settlements, and fields was projected to increase. The widest durian land suitability class was quite suitable (S۲), and thus, durian was recommended to be developed to maintain forests, reduce land damage, and for its high economic value.CONCLUSION: Land use changes in the Pakpak Bharat Regency from ۲۰۱۴ to ۲۰۲۲ were relatively slow. The land use for forests fluctuated between ۲۰۱۴-۲۰۱۸ and ۲۰۱۸-۲۰۲۲, while land uses that consistently increased were for plantations and settlements. The ۲۰۲۲ land use modeling results had an excellent level of accuracy, and thus, the model could be used to predict land use in ۲۰۳۰. In addition, the results showed that durian could become the leading regional commodity because it was scientifically proven to be suitable for plantation and profitable.

نویسندگان

S.S.B. Girsang

Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor ۱۶۹۱۵, Indonesia

D.M. Banurea

Regional Research and Development Planning Agency, Pakpak Bharat Regency, Salak, ۲۲۲۷۲, Indonesia

P. Lestari

Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor ۱۶۹۱۵, Indonesia

J.B. Nambela

Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor ۱۶۹۱۵, Indonesia

I. Verawaty

Department of Agriculture, Deliserdang Regency, Lubuk Pakam, ۲۰۵۱۸, Indonesia

J. Barus

Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor ۱۶۹۱۵, Indonesia

Jonharnas

Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Bogor ۱۶۹۱۵, Indonesia

M.A. Girsang

Research Center for Cooperative, Corporation, and People's Economy, Research Organization for Governance, Economy, and Community Welfare, National Research and Innovation Agency, Jakarta ۱۲۷۱۰, Indonesia

T. Purba

Research Center for Cooperative, Corporation, and People's Economy, Research Organization for Governance, Economy, and Community Welfare, National Research and Innovation Agency, Jakarta ۱۲۷۱۰, Indonesia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abousaeidi, M.; Fauzi, R.; Muhamad, R., (۲۰۱۵). Geographic information system ...
  • Anhar, A.; Muslih, A.M.; Baihaqi, A.; Abubakar, Y., (۲۰۲۴). Changes ...
  • Arico, Z.; Rahmawaty; Delvian; Harahap, H.; Ismail, M.H., (۲۰۲۳). Analysis ...
  • Ariani, R.D.; Susilo, B., (۲۰۲۲). Population pressure on agricultural land ...
  • Bielecka, E., (۲۰۲۰). GIS spatial analysis modeling for land use ...
  • Black, B.; Van Strien, M.J.; Adde, A.; Grêt-Regamey, A., (۲۰۲۳). ...
  • BPS-Statistics Pakpak Bharat Regency., (۲۰۲۴). Pakpak Bharat regency in figures ...
  • Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; ...
  • Dembélé, F.; Guuroh, R.T.; Ansah, P.B.; Asare,D.C.B.M.; Da, S.S.; Aryee, ...
  • Fernandes, A.C.S.A.; Gontijo, L.M., (۲۰۲۰). Terracing field slopes can concurrently ...
  • Fida, G.T.; Baatuuwie, B.N.; Issifu, H., (۲۰۲۴). Dynamics of land ...
  • Grekousis, G., (۲۰۱۹). Artificial neural networks and deep learning in ...
  • Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S., (۲۰۲۰). Improving ...
  • Gomes, E.; Costa, E.M.d.; Abrantes, P., (۲۰۲۴). Spatial planning and ...
  • Hariyanti, F.; Syahza, A.; Zulkarnain; Nofrizal., (۲۰۲۴). Economic transformation based ...
  • Hersperger, A. M.; Gennaio, M.; Verburg, P.H; Bürgi, M., (۲۰۱۰). ...
  • Jiang, Y.; Zhang, J.; Manuel, D-B.; Beeck, M.O.d.; Shahbaz, M.; ...
  • Kodero, J.M.; Felzer, B.S.; and Shi, Y., (۲۰۲۴). Future transition ...
  • Kim, Y.; Newman, G.; Güneralp, B., (۲۰۲۰). A review of ...
  • Kunz, A., (۲۰۱۷). Misclassification and kappa-statistic: Theoretical relationship and consequences ...
  • Lambin, E.F.; Geist, H.J.; Lepers, E., (۲۰۰۳). Dynamics of land-use ...
  • Li, X., (۲۰۱۰). Kappa-a critical review. Department of statistics, Uppsala ...
  • Long, H., Zhang, Y., Ma, L., & Tu, S. (۲۰۲۱). ...
  • Parniati, Managanta, A.A.; Tambingsila, M., (۲۰۲۲). The income and factors ...
  • Pingel, T., (۲۰۱۸). The raster data model. The geographic information ...
  • Puno, G.R.; Puno, R.C.C., (۲۰۱۹). Watershed conservation prioritization using geomorphometric ...
  • Rahmawaty; Rauf, A.; Sitorus; A.; Harahap, F.S; Walida, H. (۲۰۲۰). ...
  • Rakuasa, H.; Sihasale, D.A.; Somae, G.; Latue, P.C., (۲۰۲۳). Prediction ...
  • Rutebuka, J.; Uwimanzi, A.M.; Nkundwakazi, O.; Kagabo, D.M.; Mbonigaba, J.J.M.; ...
  • Saputra, M. H.; and Lee, H. S,. (۲۰۱۹). Prediction of ...
  • Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; ...
  • Shi, Y.; Zheng, Y; Chen, D.; Yang, J.; Cao, Y.; ...
  • Verawaty, I.; Widiatmaka; Firmansyah I., (۲۰۲۳). Modeling of land use ...
  • Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y., ...
  • Xiao, Y.; Huang, M.; Xie, G.; Zhen, L., (۲۰۲۲). Evaluating ...
  • Zhang, Z.; Wei, Y.; Li, X.; Wan, D.; Shi, Z., ...
  • Zhao, Y.; An, R.; Xiong, N.; Ou, D.; Jiang, C., ...
  • Zhou, H., Deng, Z., Xia, Y., and Fu, M. (۲۰۱۶). ...
  • نمایش کامل مراجع