A Review of Energy-efficient Task Schedulers in Fog Computing Systems for AI-IoT Environment
محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 66
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSAIC03_095
تاریخ نمایه سازی: 20 فروردین 1404
چکیده مقاله:
In the artificial intelligence and internet of things era, huge amount of computations and the surge in data generation leads to increase network traffic, making computational offloading essential for end users with limited resources. Cloud-fog computing systems refer to the utilization of non-local computing resources such as various servers, distributed storage and processing units via internet or intranet. Fog computing has emerged as a complementary solution to cloud computing, enhancing data processing and energy efficiency in low-power networks using in-node and edge processing. This paper presents a review on task scheduling techniques for fog computing systems. The focus of the paper is on the energy-efficient and low power high performance scheduler for fog-based architectures in internet of thing environments. As a result, we found that utilizing artificial intelligence and machine learning and also reinforcement learning approaches techniques for optimizations in designing task schedulers and offloading provides high performance and low power fog-based systems in IoT environment.
کلیدواژه ها:
نویسندگان
Yekta Soltani
M.Sc. Student of Computer Science Department, Faculty of Mathematic Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Fahimeh Yazdanpanah
Associate Professor of Computer Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Mohammad Alaei
Associate Professor of Computer Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran