Leveraging AI Techniques to Innovate Decision Theory Models for Enhanced Decision-Making in Complex Systems
محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 55
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSAIC03_083
تاریخ نمایه سازی: 20 فروردین 1404
چکیده مقاله:
This article explores the application of artificial intelligence techniques to enhance decision-making in complex systems, specifically within Iran's petrochemical industry. We present a comprehensive decision support model that integrates operational data, financial metrics, market demand forecasts, and regulatory compliance information. Through systematic data collection, transformation, and analysis, our model optimizes production scheduling while minimizing costs and ensuring adherence to environmental standards. By employing linear programming and predictive analytics, we demonstrate how stakeholders can make informed decisions that align production capabilities with market dynamics. This research highlights the critical role of AI technologies in providing scalable solutions to the multifaceted challenges of modern industrial operations, ultimately fostering sustainable practices and improved economic outcomes. The findings underscore the potential for advanced decision theory models to drive innovation and resilience in complex systems, paving the way for future advancements in data-driven decision-making strategies.
کلیدواژه ها:
نویسندگان
Ali Ghani Nori Alsaedi
Department of Industrial Management, Isfahan Branch, Islamic Azad University, Isfahan, Iran
Mohammad Jalali Varnamkhasti
Department of Science, Isfahan Branch, Islamic Azad University, Isfahan, Iran
Mojtaba Aghajani
Department of Industrial Management, Isfahan Branch, Islamic Azad University, Isfahan, Iran
Husam Jasim Mohammed
Department of Science, Al-Karkh University of Science, Baghdad, Iraq