Malware Detection based on Deep Learning
محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 73
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSAIC03_077
تاریخ نمایه سازی: 20 فروردین 1404
چکیده مقاله:
Malware detection is a crucial component of cybersecurity that seeks to locate and eliminate malicious software that is intended to damage or take advantage of any network or programmable device. Because modern malware is so complex and constantly changing, traditional malware detection methods like signature-based approaches are not up to the task. This study investigates how deep learning, a branch of artificial intelligence, can be used to improve malware detection. We can increase detection accuracy and adjust to new, unseen malware by utilizing deep learning models, which are capable of automatically learning and extracting features from data. This study examines various deep learning structures and strategies utilized in malware identification, assesses their efficacy, and delves into potential advancements and obstacles in the domain.
کلیدواژه ها:
نویسندگان
Seyyed Mohammad Ali Abolmaali
MSc, Computer Engineering Department, Bu-Ali Sina University, Hamedan, Iran
Reza Mohammadi
Assistant Professor, Computer Engineering Department, Bu-Ali Sina University, Hamedan, Iran
Mohammad Nassiri
Associate Professor, Computer Engineering Department, Bu-Ali Sina University, Hamedan, Iran