Fault Diagnosis of Rolling Bearing in Wind Turbine Using Vibration Signal Processing and Machine Learning

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 63

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PSAIC03_073

تاریخ نمایه سازی: 20 فروردین 1404

چکیده مقاله:

Rolling bearings, as the main equipment of wind turbines, affect the normal operation of wind generators. If the bearings are damaged, it leads to huge and significant economic losses. Most defects are not readily apparent due to the small vibrational effects of bearings operating under severe conditions. Envelope analysis is one of the effective methods in signal processing. The envelope analysis covers the extremes or minimum and maximum points of the signal. Radial basis neural network is also used in classification problems. The radial basal neural network has three layers. In this research, by using vibration signal processing by envelope analysis method, the features of vibration signals are extracted in the time domain and the radial basis neural network of the vibration data set of wind turbine bearings in real operation conditions in terms of health and defectiveness is identified and classified. The simulation results show the very successful performance of signal processing and neural network learning.

نویسندگان

Hamed Helmi

Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Fars, Iran

Ahmad Forouzantabar

Department of Electrical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Fars, Iran

Mohammad Azadi

Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Fars, Iran