Enhancing Task Placement in iFogSim Using Metaheuristic Algorithms: An Innovative Approach
محل انتشار: سومین کنفرانس بین المللی و هشتمین کنفرانس ملی کامپیوتر، فناوری اطلاعات و کاربردهای هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 122
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CEITCONF08_009
تاریخ نمایه سازی: 19 فروردین 1404
چکیده مقاله:
Task placement plays a vital role in enhancing the efficiency and performance of fog and edge computing systems. This paper proposes an advanced approach to task placement in iFogSim using the Particle Swarm Optimization (PSO) algorithm, a robust metaheuristic inspired by the social behavior of swarms. The PSO-based framework dynamically optimizes the allocation of tasks to heterogeneous resources, aiming to minimize execution latency and maximize resource utilization. By addressing the challenges of workload variability and resource constraints, the proposed method achieves superior performance compared to traditional scheduling techniques. Experimental evaluations validate the effectiveness of the PSO algorithm, highlighting its potential for improving resource management in IoT-enabled smart ecosystems.
کلیدواژه ها:
Fog Computing ، Internet of Things (IoT) ، Task Placement ، iFogSim ، Metaheuristic Algorithms ، Particle Swarm Optimization
نویسندگان
Mohammad Mahdi Ghaseminya
PhD Student in Computer Science, Department of Computer Science, Yazd University, Yazd, Iran, ۸۹۱۵۸۱۸۴۱۱
Seyed Abolfazl Shahzadeh Fazeli
Associate Professor in Computer Science, Department of Computer Science, Yazd University, Yazd, Iran, ۸۹۱۵۸۱۸۴۱۱
Najme Heydarnezhad
Master's degree in Computer Science, Department of Computer Science, Yazd University, Yazd, Iran, ۸۹۱۵۸۱۸۴۱۱