The application of an integral-equation-based automatic inversion algorithm for Interpretation of vertical electrical sounding data
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 26
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-59-1_011
تاریخ نمایه سازی: 19 فروردین 1404
چکیده مقاله:
This study presents the implementation of an automatic inversion algorithm designed for the analysis of direct current (DC) vertical electrical sounding (VES) data, utilizing a one-dimensional (۱D) linear integral equation approach. The forward modelling problem was derived from a three-dimensional (۳D) integral equation, which was elegantly simplified through numerical integration across horizontal dimensions. The inverse problem was tackled through a minimum length solution that integrated a depth-weighting function and optimized the regularization parameter based on the maximum value of the forward operator. The efficacy of this algorithm was validated by inverting synthetic datasets as well as by its application to real field data. The results highlighted the limitations inherent in ۱D inversion, particularly in cases where a layered Earth is significantly violated, as evidenced by comparisons with two-dimensional inversion models. In contrast, in contexts characterized by predominantly layered subsurface structures, the algorithm successfully produced accurate representations of the subsurface models. These findings underscore the method's efficacy in various geological environments, offering a robust tool for geophysical exploration.
کلیدواژه ها:
DC resistivity ، Electrical resistivity sounding ، Vertical Electrical Sounding (VES) ، Integral equations
نویسندگان
Seyed Hossein Hosseini
Institute of Geophysics, University of Tehran, Tehran, Iran.
Ramin Varfinezhad
Institute of Geophysics, University of Tehran, Tehran, Iran.
Saeed Parnow
The Faringdon Research Centre for Non-Destructive Testing and Remote Sensing, University of West London, London, United Kingdom of Great Britain and Northern Ireland.
Saeed ghanbarifar
Institute of Geophysics, University of Tehran, Tehran, Iran.
Maysam Abedi
School of Mining Engineering, Faculty of Engineering, University of Tehran, Iran.
Ali Asghar Ghasemi
Faculty of Sciences, Razi University, Kermanshah, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :