Intervention of the Koo-Kleinstreuer and Li Model in Nanofluid Flow over Magnetic Dipole Centered Curved Sheet and Optimizing Entropy using Response Surface Methodology

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 63

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACM-11-2_009

تاریخ نمایه سازی: 19 فروردین 1404

چکیده مقاله:

Nanofluids are recognized as smart fluids, offering significant advantages for enhancing heat and mass transfer. Their utility spans various domains, including electronics, biomedicine, and industrial processes. Against this backdrop, our present study focuses on examining response surface method and carrying out sensitivity analysis for Al۲O۳ nano-fluid flow over a stretching curved geometry. The response surface mechanism is envisioned for Eckert number, Prandtl number, as well as radiation parameter. This study introduces a novel perspective by investigating the interplay of heat and mass transfer in nano-liquids, incorporating radiative heat flux and the influence of a magnetic dipole. The Koo-Kleinstreuer and Li model analyses Brownian motion effect on viscosity and effective thermal conductivity. The modelled problem is solved using the Runge-Kutta-Fehlberg ۴th–۵th method. The results show that as ferrohydrodynamic interaction intensifies, it leads to an augmentation in velocity near the boundary, followed by a subsequent rise; however, the temperature profile experiences a decrease. As the thermal radiation parameter escalates, so does the temperature profile. Conversely, the concentration profile diminishes with heightened chemical reaction and Schmidt number. Entropy rises in correlation with an enhancement in the temperature ratio parameter, yet the Bejan number declines. The Pareto chart highlights ۲ as the critical point for the Eckert number, Prandtl number, and radiation parameter. Specifically, the Prandtl number demonstrates a negative sensitivity across all levels of radiation parameter. Conversely, both the Eckert number and radiation parameter exhibit positive sensitivity at all levels of radiation parameter.

نویسندگان

K.G. Vidhya

Department of Mathematics, School of Engineering, Presidency University, Rajanakunte, Yelahanka Bengaluru-۵۶۰۰۶۴, Karnataka, India

F. Almeida

Department of Mathematics, School of Engineering, Presidency University, Rajanakunte, Yelahanka Bengaluru-۵۶۰۰۶۴, Karnataka, India

P. Kumar

Department of Mathematics, School of Engineering, Presidency University, Rajanakunte, Yelahanka Bengaluru-۵۶۰۰۶۴, Karnataka, India

B. Nagaraja

Department of Mathematics, School of Engineering, Presidency University, Rajanakunte, Yelahanka Bengaluru-۵۶۰۰۶۴, Karnataka, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Choi, S.U.S., Eastman, J.A., Enhancing thermal conductivity of fluids with nanoparticles, ...
  • Hayat, T., Rashid, M., Alsaedi, A., MHD convective flow of ...
  • Sharma, R., Bisht, A., Numerical study of MHD flow and ...
  • Usama, S., Nadeem, Khan, A.U., Stability analysis of Cu-H۲O nanofluid ...
  • Jammalamadaka, S.R., Qiu, J., Ning, N., Predicting a stock portfolio ...
  • Sene, N., Second-grade fluid model with Caputo–Liouville generalized fractional derivative, ...
  • Precup, R.E., Teban, T.A., Albu, A., Borlea, A.B., Zamfirache, I.A., ...
  • Koo, J., Kleinstreuer, C., Laminar nanofluid flow in micro heat-sinks, ...
  • Jie, J., Kleinstreuer, C., Thermal performance of nanofluid flow in ...
  • Kandelousi, M.S., Sheikholeslami. M., KKL correlation for simulation of nanofluid ...
  • Sheikholeslami, M., Ganji, D.D., Effect of adding nanoparticle on squeezing ...
  • Mohammadein, S.A., Raslan, K., Abdel-Wahed, M.S., Abedel-Aal. E.M., KKL-model of ...
  • Kumar, R.N., Alam, R.J.G.M., Ahmad, I., Mahrous, Y.M., Gorji, M.R., ...
  • Sajid, M., Ali, N., Javed, T., Abbas, Z., Stretching a ...
  • Naveed, M., Abbas, Z., Sajid, M., MHD flow of micropolar ...
  • Sanni, K.M., Asghar, S., Jalil, M., Okechi, N.F., Flow of ...
  • Hayat, T., Sajjad, R., Ellahi, R., Alsaedi, A., Muhammad, T., ...
  • Khan, N.S., Hussanan, A., Kumam, W., Kumam, P., Suttiarporn, P., ...
  • Boyer, T.H., The force on a magnetic dipole, American Journal of ...
  • Ishak, A., Mixed convection boundary layer flow over a horizontal ...
  • Zeeshan, A., Majeed, A., Heat transfer analysis of Jeffery fluid ...
  • Usman, A.H., Khan, N.S., Rano, S.A., Maitama, M., Study of ...
  • Kumar, P., Nagaraja, B., Almeida, F., AjayKumar, A.R., Al-Mdallal, Q., ...
  • Hayat, T., Kiran, A., Imtiaz, M., Alsaedi, A., Hydromagnetic mixed ...
  • Hayat, T., Rashid, M., Imtiaz, M., Alsaedi, A., MHD convective ...
  • Patel, H.R., Singh, R., Thermophoresis, Brownian motion and non-linear thermal ...
  • Muhammad, K., Hayat, T., Alsaedi, A., Numerical study of Newtonian ...
  • Nagaraja, B., Gireesha. B.J., Exponential space-dependent heat generation impact on ...
  • Muhammad R., Khan, M.I., Khan, N.B., Jameel, M., Magnetohydrodynamics (MHD) ...
  • Almeida, F., Gireesha, B.J., Venkatesh, P., Nagaraja, B., KKL Model ...
  • Sakkaravarthi, K., Reddy, P.B.A., Non-linear thermal radiation and entropy generation ...
  • نمایش کامل مراجع