BiTr-Unet: Integrating CNN and Transformer Architectures for Accurate Brain Tumor Segmentation
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 102
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EITCONF03_038
تاریخ نمایه سازی: 18 فروردین 1404
چکیده مقاله:
Brain tumor segmentation plays a critical role in medical imaging, enabling precise diagnosis and treatment planning. This paper introduces a novel framework that integrates Convolutional Neural Networks (CNNs) and Transformer architectures to enhance segmentation accuracy and robustness. The proposed model leverages CNNs for extracting local spatial features and Transformers for capturing long-range dependencies, addressing limitations in existing single-architecture approaches. Using the BraTS ۲۰۲۳ dataset, the model achieved state-of-the-art performance with a Dice Score of ۰.۹۱ and improved generalization across diverse tumor types. Comprehensive experiments demonstrate the superiority of our approach compared to baseline methods, highlighting its potential for clinical applications.
کلیدواژه ها:
نویسندگان
Kia Shirdel
Department of Computer Engineering from Shahid Mehdi Bakri Faculty of Technology and Engineering, Islamic Azad University, Urmia, Iran