EMCTNet: EGFR Mutation Detection from CT Images in NSCLC Patients Using EfficientNet Model
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 70
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT02_066
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
Lung cancer is a common disease and is considered the leading cause of cancer-related death. Early detection and treatment are essential to reduce the mortality and morbidity rate. Epidermal growth factor receptor (EGFR) mutation is a critical factor in the treatment of non-small cell lung cancer (NSCLC) patients. So, an accurate, automatic, and convenient method is needed for EGFR mutation detection in NSCLC patients. In this paper, we developed a novel method for EGFR mutation detection from CT images called EMCTNet. Firstly, we pre-processed the lung nodules in the CT images and then fine-tuned the EfficientNet-B۱ to extract salient features from lung nodules. Finally, each patient is classified as a mutant or wild-type EGFR category. To overcome the imbalanced learning problems, we generate balanced batches with a random oversampling method. The performance of our proposed method was validated on NSCLC Radiogenomics TCIA data with ۲۱۱ patients in a stratified ۱۰-fold cross-validation manner. The accuracy and the area under the curve of the proposed method achieved ۸۶.۷۸% and ۰.۷۴, respectively. Our results showed the effectiveness of deep learning methods in automatically detecting EGFR mutations in NSCLC patients.
کلیدواژه ها:
نویسندگان
Mahsa Bahrami
Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Mansour Vali
Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran