Bridging Heterogeneous Data Silos: A Vertical Federated Learning Approach with Additive Secret Sharing for Cardiovascular Prediction
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 93
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT02_065
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
This study proposes a novel approach to overcome data silo challenges in healthcare by applying Vertical Federated Learning (VFL) with additive secret sharing for cardiovascular disease prediction. Using the UCI Heart Disease dataset, specifically the Cleveland and Hungarian datasets, our framework enables collaborative training across institutions with vertically partitioned patient data. Each institution trains a Convolutional Neural Network (CNN) on its localized data, contributing distinct patient features without sharing raw data. Secure aggregation is achieved through Secure Multi-Party Computation (SMPC) and additive secret sharing, ensuring compliance with privacy regulations while preserving model utility. Our global model demonstrates promising results in predicting cardiovascular risk, evaluated using metrics like F۱-score, ROC-AUC, and precision-recall, showcasing VFL's potential in healthcare applications.
کلیدواژه ها:
نویسندگان
Mohammadamin Ahanin
Bachelor Student, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
Pirooz Shamsinejad
Assistant Professor, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
Mohammad Zare
Ph.D. Candidate, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran