Bridging Heterogeneous Data Silos: A Vertical Federated Learning Approach with Additive Secret Sharing for Cardiovascular Prediction

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 93

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AISOFT02_065

تاریخ نمایه سازی: 17 فروردین 1404

چکیده مقاله:

This study proposes a novel approach to overcome data silo challenges in healthcare by applying Vertical Federated Learning (VFL) with additive secret sharing for cardiovascular disease prediction. Using the UCI Heart Disease dataset, specifically the Cleveland and Hungarian datasets, our framework enables collaborative training across institutions with vertically partitioned patient data. Each institution trains a Convolutional Neural Network (CNN) on its localized data, contributing distinct patient features without sharing raw data. Secure aggregation is achieved through Secure Multi-Party Computation (SMPC) and additive secret sharing, ensuring compliance with privacy regulations while preserving model utility. Our global model demonstrates promising results in predicting cardiovascular risk, evaluated using metrics like F۱-score, ROC-AUC, and precision-recall, showcasing VFL's potential in healthcare applications.

نویسندگان

Mohammadamin Ahanin

Bachelor Student, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran

Pirooz Shamsinejad

Assistant Professor, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran

Mohammad Zare

Ph.D. Candidate, Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran