A Proposed Recommender System for Dental Care Treatments Based on Ensemble Learning
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 61
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT02_046
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
This study utilizes the ۲۰۱۵-۲۰۱۶ National Health and Nutrition Examination Survey (NHANES) dataset to construct a comprehensive and unified dataset, that integrates data from multiple sections. Following essential preprocessing steps, we implement a range of conventional machine learning algorithms alongside ensemble methods to develop a recommendation system for oral and dental health care. This system assesses patient health conditions to suggest the necessity of dental visits. By analyzing patterns and trends within the dataset, our system can provide personalized recommendations, potentially improving oral health outcomes. Our results underscore the superior performance of ensemble models, particularly the stacking method, demonstrating their effectiveness and reliability over traditional machine learning models.
کلیدواژه ها:
Ensemble Learning ، Stacking Model ، Dental Care Recommendations ، NHANES Dataset ، Machine Learning in Dentistry
نویسندگان
Nasrin Gholami
Department of Computer Science and Engineering and IT, Shiraz University, Shiraz, Iran
Seyed Mostafa Fakhrahmad
Department of Computer Science and Engineering and IT, Shiraz University, Shiraz, Iran