A Proposed Recommender System for Dental Care Treatments Based on Ensemble Learning

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 61

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AISOFT02_046

تاریخ نمایه سازی: 17 فروردین 1404

چکیده مقاله:

This study utilizes the ۲۰۱۵-۲۰۱۶ National Health and Nutrition Examination Survey (NHANES) dataset to construct a comprehensive and unified dataset, that integrates data from multiple sections. Following essential preprocessing steps, we implement a range of conventional machine learning algorithms alongside ensemble methods to develop a recommendation system for oral and dental health care. This system assesses patient health conditions to suggest the necessity of dental visits. By analyzing patterns and trends within the dataset, our system can provide personalized recommendations, potentially improving oral health outcomes. Our results underscore the superior performance of ensemble models, particularly the stacking method, demonstrating their effectiveness and reliability over traditional machine learning models.

کلیدواژه ها:

نویسندگان

Nasrin Gholami

Department of Computer Science and Engineering and IT, Shiraz University, Shiraz, Iran

Seyed Mostafa Fakhrahmad

Department of Computer Science and Engineering and IT, Shiraz University, Shiraz, Iran