AI-Driven Optimization Of Flare Stack Combustion Processes In Oil Refineries: Integrating Real-Time Data Analytics, Predictive Modeling, And Emission Reduction Algorithms

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 64

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

TETSCONF15_018

تاریخ نمایه سازی: 17 فروردین 1404

چکیده مقاله:

Flare stacks are essential in managing excess gases and preventing the release of harmful volatile organic compounds (VOCs) and greenhouse gases into the atmosphere in oil refineries. However, flare stack operations often result in inefficiencies and excessive emissions. This paper proposes an AI-driven approach to optimize flare stack combustion processes by integrating real-time data analytics, predictive modelling, and emission reduction algorithms. The framework leverages IoT-based sensor networks, machine learning models, and dynamic control systems to enhance combustion efficiency, minimize emissions, and improve energy recovery. The results show that this approach significantly reduces operational inefficiencies, improves predictive maintenance, and supports sustainable refining practices.

کلیدواژه ها:

نویسندگان

Seyed Mohammad Reza Seyed Jafari

Researcher and DBA of Information Technology (IT), Iranian Institute, Iran

Reza Mansoori

Assistant Professor of Electrical Engineering, Karlsruhe Institute of Technology, Germany

Seyed Mohammad Hossein Moayedi

Researcher and MBA, Sharif University of Technology, Iran

Hamidreza Seyed Jafari

PhD Candidate, Petroleum University of Technology, Iran