AI-Driven Optimization Of Flare Stack Combustion Processes In Oil Refineries: Integrating Real-Time Data Analytics, Predictive Modeling, And Emission Reduction Algorithms
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 64
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
TETSCONF15_018
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
Flare stacks are essential in managing excess gases and preventing the release of harmful volatile organic compounds (VOCs) and greenhouse gases into the atmosphere in oil refineries. However, flare stack operations often result in inefficiencies and excessive emissions. This paper proposes an AI-driven approach to optimize flare stack combustion processes by integrating real-time data analytics, predictive modelling, and emission reduction algorithms. The framework leverages IoT-based sensor networks, machine learning models, and dynamic control systems to enhance combustion efficiency, minimize emissions, and improve energy recovery. The results show that this approach significantly reduces operational inefficiencies, improves predictive maintenance, and supports sustainable refining practices.
کلیدواژه ها:
نویسندگان
Seyed Mohammad Reza Seyed Jafari
Researcher and DBA of Information Technology (IT), Iranian Institute, Iran
Reza Mansoori
Assistant Professor of Electrical Engineering, Karlsruhe Institute of Technology, Germany
Seyed Mohammad Hossein Moayedi
Researcher and MBA, Sharif University of Technology, Iran
Hamidreza Seyed Jafari
PhD Candidate, Petroleum University of Technology, Iran