MDBSCAN+: Enhancing MDBSCAN for Outlier Detection
محل انتشار: پنجمین همایش بین المللی دستاوردهای نوین در فناوری اطلاعات، علوم کامپیوتر، امنیت، شبکه و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 173
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
INDEXCONF05_014
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
Clustering is a vital technique in data analysis, but standard methods like DBSCAN may struggle with datasets that contain clusters of varying densities. MDBSCAN addresses these limitations by classifying data into low- and high-density regions before refining and merging clusters. However, MDBSCAN’s reliance on multiple hyperparameters complicates its outlier detection. Meanwhile, MS۲OD detects outliers in multi-density datasets through a scaled Minimum Spanning Tree (MST) approach but can misclassify smaller or sparsely located clusters as outliers. To overcome both MDBSCAN’s and MS۲OD’s shortcomings, the proposed MDBSCAN+ integrates the two approaches. It first detects potential outliers with MS۲OD, then applies MDBSCAN for clustering and evaluates outlier candidates via k-nearest neighbor distances. MDBSCAN+ effectively handles multi-density datasets and accurately identifies outliers with only one additional parameter (k), making it both efficient and user-friendly.
نویسندگان
Hossein Eyvazi
Tarbiat Modares University of Tehran
Ali Rajaei
Tarbiat Modares University of Tehran