Federated Learning: Enhancing Privacy -Preserving Machine Learning Across Diverse Applications
محل انتشار: پنجمین همایش بین المللی دستاوردهای نوین در فناوری اطلاعات، علوم کامپیوتر، امنیت، شبکه و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 30
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
INDEXCONF05_004
تاریخ نمایه سازی: 17 فروردین 1404
چکیده مقاله:
Federated Learning (FL) has emerged as a powerful paradigm that allows machine learning models to be trained across decentralized devices while maintaining data privacy. This paper explores the advancements in Federated Learning, discussing its underlying principles, key challenges, and applications. The paper highlights the role of federated optimization algorithms, privacy preservation mechanisms, and communication efficiency improvements that enable FL to be applied in real-world scenarios. We also examine the impact of data heterogeneity, security concerns, and model convergence in federated environments. Finally, we present potential future directions for Federated Learning, emphasizing its integration with emerging technologies like edge computing and ۵G.
کلیدواژه ها:
نویسندگان
Asal Aliyari
Shiraz University