Occlusion-Aware TV-L۱ Optical Flow with Second-Order Regularization

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCPM05_014

تاریخ نمایه سازی: 17 فروردین 1404

چکیده مقاله:

We introduce a new variational framework for optical flow estimation that jointly accounts for occlusions and smooth yet discontinuity-preserving motion fields. Classic TV-L۱ approaches often struggle where brightness constancy fails—such as at occlusions—and may produce undesirable “staircase” artifacts due to first-order total variation regularization. To tackle these limitations, we propose an occlusion-aware formulation in which each pixel is assigned a mask variable indicating whether it should adhere to brightness constancy. Simultaneously, we replace the standard TV term with a second-order total generalized variation (TGV) prior, allowing the estimated flow to transition smoothly within objects while preserving sharp boundaries. The resulting convex energy is efficiently minimized via a primal-dual algorithm, embedded in a coarse-to-fine warping strategy for handling large displacements. Experiments on synthetic and real datasets, including Middlebury and KITTI, show that our method outperforms classical TV-L۱ in occluded areas and yields more realistic flow fields with reduced staircasing. These results demonstrate the benefits of pairing explicit occlusion handling with second-order regularization in a unified optical flow framework.

نویسندگان

Hossein Choubin

Tarbiat Modares University, Faculty of Computer Science