An Extensive Optimization Framework for Energy Management within Energy Hubs: A Comparative Analysis of Simulated Multi-Agent Systems, Genetic Algorithms, and Mixed-Integer Linear Programming Incorporating Demand Response Mechanisms
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 213
فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EEEC05_017
تاریخ نمایه سازی: 4 فروردین 1404
چکیده مقاله:
In this paper, we present a framework on Combined Energy System (CES) to optimize energy management in energy hubs (EHs), integrating renewable energy sources (RERs) with demand response (DR) mechanisms. A methodological framework of stochastic scenario-based methodology is used to address the uncertainties associated with wind, solar, and energy prices. Three optimization techniques - Slime Mould Algorithm (SMA), Genetic Algorithm (GA), and Mixed-Integer Linear Programming (MILP) - are compared. SMA is again found to be most cost-efficient by around ۱۰% regarding operational costs compared to GA and MILP. Further incorporation of DR enhances cost reduction by SMA further reiterating the claim of SMA for renewable energy promotion. These results provide definite indications for SMA to be a strong and reliable platform for modern energy systems.
کلیدواژه ها:
نویسندگان
Mehrdad Esmaeilipour
Department of Electrical, Islamic Azad University, Bushehr Branch, Bushehr, Iran
Mohammad Hossein Zalzar
Department of Electrical, University of Persian Gulf, Bushehr, Iran