An Extensive Optimization Framework for Energy Management within Energy Hubs: A Comparative Analysis of Simulated Multi-Agent Systems, Genetic Algorithms, and Mixed-Integer Linear Programming Incorporating Demand Response Mechanisms

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 213

فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EEEC05_017

تاریخ نمایه سازی: 4 فروردین 1404

چکیده مقاله:

In this paper, we present a framework on Combined Energy System (CES) to optimize energy management in energy hubs (EHs), integrating renewable energy sources (RERs) with demand response (DR) mechanisms. A methodological framework of stochastic scenario-based methodology is used to address the uncertainties associated with wind, solar, and energy prices. Three optimization techniques - Slime Mould Algorithm (SMA), Genetic Algorithm (GA), and Mixed-Integer Linear Programming (MILP) - are compared. SMA is again found to be most cost-efficient by around ۱۰% regarding operational costs compared to GA and MILP. Further incorporation of DR enhances cost reduction by SMA further reiterating the claim of SMA for renewable energy promotion. These results provide definite indications for SMA to be a strong and reliable platform for modern energy systems.

نویسندگان

Mehrdad Esmaeilipour

Department of Electrical, Islamic Azad University, Bushehr Branch, Bushehr, Iran

Mohammad Hossein Zalzar

Department of Electrical, University of Persian Gulf, Bushehr, Iran