Applying Deep Generative Methods to Generate Synthetic Data in Power Systems
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-4-2_004
تاریخ نمایه سازی: 2 فروردین 1404
چکیده مقاله:
The lack of access to reliable databases, as well as the small number and imbalance of databases, is one of the main limitations of using machine learning methods in power systems, which can reduce efficiency and cause distrust in the results obtained from these methods. One of the solutions used to solve this problem is the use of Synthetic data generation. Two deep generative architectures, Generative Adversarial Network (GAN) and Variational Auto Encoder (VAE), are currently used to generate synthetic data. Due to the novelty and importance of the subject, until now, a comparative study has not been done on the research conducted in this field, in terms of subject classification, with an emphasis on validation methods of synthetic production databases. The purpose of this research is to review the studies done in this field up to now and examine the research trends for the future. In this regard, after introducing the principles of GAN and VAE deep architectures, the subject of synthetic data generation using the mentioned methods in power systems has been studied comparatively.
کلیدواژه ها:
نویسندگان
Mohsen Kariman Majd
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
Mohsen Niasati
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :