Anomaly Detection in Gas Turbines Using DLSTM - Autoencoder with Data Augmentation
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 124
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
MCTCD03_027
تاریخ نمایه سازی: 28 اسفند 1403
چکیده مقاله:
The present work aims to enhance fault detection in the Kirkuk power plant gas turbines based on a hybrid machine learning model. Autoencoder and a Deep Long Short-Term Memory (DLSTM) hybrid model was used for anomaly detection out of vibrational data. The dataset was collected through CA ۲۰۲ piezoelectric accelerometers mounted on the turbines. Since there was little abnormal data, augmentation was employed to create synthetic anomalies for the dataset by flipping and applying jittering to the same dataset. The desired hybrid model achieved an anomaly detection accuracy of ۹۶.۱۰% for the Clark dataset and outperformed the Isolation Forest and K-means clustering. As a result, the present work offers a solid foundation to drive the predictive maintenance process for industrial gas turbines and thus reduce the likelihood of a failure occurrence.
کلیدواژه ها:
نویسندگان
Watban Khalid Fahmi Al-Tekreeti
Ph.D. Student, Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation.
Reza Kashyzadeh Kazem
Full Professor, Department of Transport Equipment and Technology, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation.
Ghorbani Siamak
Associate Professor, Department of Mechanical Engineering, Academy of Engineering, RUDN University, ۶ Miklukho-Maklaya Street, Moscow ۱۱۷۱۹۸, Russian Federation.