Optimizing Job Rotation through Biorhythm Analysis and Artificial Neural Network (ANN) Methodology

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 62

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JIJMS-18-2_007

تاریخ نمایه سازی: 25 اسفند 1403

چکیده مقاله:

Job rotation is defined as workers rotating between tasks with different exposure levels and occupational demands. Implementing effective job rotation strategies poses challenges, especially in determining the optimal timing and sequencing of rotations to ensure that employees are suitably matched with job roles. Existing studies indicate that many expectations regarding job rotation have not been fully achieved, as the prediction and measurement of its impact on organizational and individual productivity have not been adequately researched. A critical factor influencing individual productivity is the fluctuation in employee performance, driven by the cyclical mental and physical characteristics of employees, known as biorhythms. Current job rotation models do not adequately address biorhythms, which are inherently difficult to predict. No methodologies have been proposed to model, analyze, or predict these fluctuations in the context of job rotation strategies. This research addresses this gap by developing an artificial neural network (ANN) algorithm capable of modeling complex biorhythmic patterns derived from employee performance data. The proposed model refines job rotation strategies by optimizing the alignment between worker capacities and workstation demands. The method is also applied to an industrial case study, demonstrating its applicability and potential to improve overall operational efficiency.

کلیدواژه ها:

Job Rotation ، Multi Criteria Decision Making ، artificial neural network (ANN) ، Intelligent decision support systems ، Biorhythmic analysis

نویسندگان

Pedram Safaiyan

Department of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran

Abbas Ali Rastgar

Department of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ali, O., Abdelbaki, W., Shrestha, A., Elbasi, E., Alryalat, M. ...
  • Alzeraif, M., & Cheaitou, A. (۲۰۲۳). Artificial intelligence-based optimization models ...
  • نمایش کامل مراجع