A New Proposed Model for Early Kick Detection in Drilling Operation Using Machine Learning

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 46

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-16-2_004

تاریخ نمایه سازی: 25 اسفند 1403

چکیده مقاله:

Kick monitoring, detection, and control are key elements to ensure safe drilling operations and avoid catastrophic blow-out incidents that can cause loss of life, equipment, and environmental damage. Conventional kick detection systems such as the pit volume totalizer and the flow in/out sensors identify the kick after a large amount of influx has been recorded on the surface. So, we aim to recognize the kick before it enters the wellbore by detecting the abnormal formation pressure once the bit penetrates the rock. This paper proposes a new machine learning model as an alternative solution using field drilling parameters such as true vertical depth, porosity, bulk density, resistivity, rate of penetration, weight on bit, rotation per minute, torque, standpipe pressure, flow rate, flowline temperature, and gas level. The data-driven models were developed using three separate algorithms: K-Nearest Neighbor, Random Forest, and XG Boost. ۶۰۲۲ field data points were split for training, testing, and validation processes. On average, the model using the random forest algorithm showed the highest accuracy in forecasting the formation pressure, with root mean squared error values and coefficient of determination values of ۱۲.۸۶۸ and ۰.۹۶۳۸, respectively. Streamlit Deployment tool was used to create a user interface program to facilitate the prediction process. The program was tested using ۱۹۶ field data points and recorded a high accuracy of ۹۵%.

نویسندگان

Mustafa Elgindy

Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, P.O.Box: ۴۳۲۲۱, Suez, Egypt

Ahmed Nooh

Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt

Ali Wahba

Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, P.O.Box: ۴۳۲۲۱, Suez, Egypt

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Schools, A. D. (۲۰۰۲). Well control for the rig-site ...
  • . President Commission. (۲۰۱۱). National Commission on the BP Deepwater ...
  • . Sætren, T. G. (۲۰۰۷). Offshore blow-out accidents: an analysis of ...
  • . A. O. Erete, E. E. Okoro, E. Ekeinde, and ...
  • . Magana-Mora, A., Affleck, M., Ibrahim, M., Makowski, G., Kapoor, ...
  • . Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., & ...
  • . Muojeke, S., Venkatesan, R., & Khan, F. (۲۰۲۰). Supervised ...
  • . Khamis, Y. E., El-Rammah, S. G., & Salem, A. ...
  • . H. Rabia, Well Engineering & Construction. Entrac Consulting Limited, ...
  • . Chevron Energy Technology Company (CETC), Drilling Well Control Guide. ...
  • . Aramco, S. (۲۰۰۲). Well Control Manual, Drilling and Workover ...
  • . Ahmed, M. A., Hegab, O. A., & Sabry, A. ...
  • . Tost, B., Rose, K., Aminzadeh, F., Ante, M. A., ...
  • . American Petroleum Institute (API), API Standard ۵۳, Well Control ...
  • . H. Abdul-Ameer, “Machine Learning Methods for Kick Detection (Doctoral ...
  • . Nayeem, A. A., Venkatesan, R., & Khan, F. (۲۰۱۶). ...
  • . Islam, R., Khan, F., & Venkatesan, R. (۲۰۱۷). Real ...
  • . Faraj, A. K., & Hussein, H. A. H. A. ...
  • . Nelli, F. (۲۰۱۸). Python data analytics with Pandas, NumPy, ...
  • . Flach, P. (۲۰۱۲). Machine learning: the art and science of ...
  • . Osarogiagbon, A., Muojeke, S., Venkatesan, R., Khan, F., & ...
  • . Fjetland, A. K. (۲۰۱۹). Kick Detection During Offshore Drilling Using ...
  • . Grus, J. (۲۰۱۹). Data science from scratch: first principles with ...
  • . Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., ...
  • . Mining, W. I. D. (۲۰۰۶). Introduction to data mining (pp. ۲-۱۲). ...
  • . Breiman, L. (۲۰۰۱). Random forests. Machine learning, ۴۵, ۵-۳۲ ...
  • . Bentlemsan, M., Zemouri, E. T., Bouchaffra, D., Yahya-Zoubir, B., ...
  • . Blakely, L., Reno, M. J., & Broderick, R. J. ...
  • . Chen, T., & Guestrin, C. (۲۰۱۶, August). Xgboost: A ...
  • . Malik, S., Harode, R., & Kunwar, A. (۲۰۲۰). XGBoost: ...
  • . Singh, P. (۲۰۲۱). Deploy machine learning models to production. Cham, ...
  • . Mosca, E., Szigeti, F., Tragianni, S., Gallagher, D., & ...
  • نمایش کامل مراجع