A numerical method for solving boundary optimal control problem modeled by heat transfer equation, in the presence of a scale invariance property
محل انتشار: مجله مدلسازی ریاضی، دوره: 13، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-13-1_008
تاریخ نمایه سازی: 25 اسفند 1403
چکیده مقاله:
In this paper, we present a computational approach for solving a boundary optimal control problem modeled by heat transfer equation with two-point boundary conditions, in the presence of a scale invariance property under dilation. First, we establish a scale-invariant solution. Indeed, the dependence of this solution towards a scale invariance factor naturally leads to an optimal control problem. Second, we propose a numerical approach to solve this problem. The idea consists in transforming the problem into an optimal control problem modeled by a system of ordinary differential equations invariant under dilation using the finite difference approximation. Therefor, the minimum principle of Pontryagin is applied to derive the necessary optimality conditions that are solved by the vartiational iteration method to get an approximate scale-invariant solutions for the optimal control law. Finally, to show the efficiency of this approach, a numerical example is illustrated and comparison with another method is performed.
کلیدواژه ها:
optimal control ، heat-transfer equation ، scale invariance ، iteration variational method ، minimum principe of Pontryagin
نویسندگان
Benalia Karim
Department of Mathematical Sciences, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Boumerdes, Algeria
Beddek Karim
Laboratory of Applied Automation (LAA), Department of Automation, Faculty of Hydrocarbons and Chemistry, University of Boumerdes, Algeria
Oukacha Brahim
Laboratory of Operational Research and Mathematical decision, University of Tizi-Ouzou, Hasnaoua II ۱۵۰۰۰, Algeria