Presenting an Algebraic Method for Optimally Locating Counter Sensors on a Traffic Network for Estimating the OD Matrix
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 81
فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTE-12-3_001
تاریخ نمایه سازی: 22 اسفند 1403
چکیده مقاله:
For several decades, finding the optimal location of counting sensors in a traffic network to obtain the best estimates of the O-D matrix has attracted a growing amount of attention. The availability and the accuracy of a priori data in a network such as O-D matrix and route choice probabilities on one hand, and the complexity of the mathematical operations for solving the location problem even in not a large network, on the other hand, are two main concerns of the presented methods. This paper aims to propose a method that identifies optimum locations for counting sensors without utilizing any a priori data. Relying on the network topological characteristics and link travel times as the representation of the network’s pattern of trips is the core concept of this study. By taking benefit of the frame theory algebraic operations, needless of any pre-given a priori data, the location set vector with higher coverage on the network route vectors is identified as the optimal location set of the sensor-equipped network links based on its representation in the route-vectors frame. The most probable used paths are identified utilizing an efficient path algorithm. Additionally, by taking advantage of the matrix operations, the novel method obviates the calculations required in methods using linear or non-linear programming solutions. The presented method is applied on a test network and the results show that in comparison to the non-linear programming method, the proposed method finds a better solution.
کلیدواژه ها:
نویسندگان
Navid Hosseini Taleghani
Ph.D., Tarahan Parseh Transportation Research Institute, Tehran, Iran
Seyed Ehsan Seyedabrishami
Associate Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
Mahmoud Saffarzadeh
Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :