مقایسه روش های متامدل ساختار تابع پایه تطبیق پذیر و شبکه عصبی مصنوعی در طراحی گرین فینوسیل
محل انتشار: مهندسی مکانیک مدرس، دوره: 20، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 11
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MME-20-1_005
تاریخ نمایه سازی: 21 اسفند 1403
چکیده مقاله:
طراحی گرین مهمترین بخش طراحی موتور سوخت جامد می باشد، در این مقاله هدف طراحی گرین فینوسیل بر اساس توابع هدف از پیش تعیین شده با توجه به نمودارهای بالستیکی می باشد تا انواع الزامات تراست عملکردی را از طریق یک روش طراحی نوآورانه با بهره گیری از الگوریتم بهینه سازی ژنتیک، ارضا نماید . به منظور نمونه برداری در فضای طراحی از روش نمونه برداری کلاسیک استفاده شده است. برای شبیه سازی پسروی سطح سوزش گرین سوخت روش سطوح همتراز انتخاب شده است، در کنار کد سطوح همتراز الگوریتمی توسعه داده شده است که شکل اولیه گرین را با استفاده از کد نگارش شده در محیط نرم افزار پرواینجینیر به عنوان مدلهای تولیدی به کد سطوح همتراز ارسال نماید. به منظور تحلیل بالستیک داخلی، از روش صفر بعدی استفاده شده است. دو روش متامدل، اولی بر اساس روش ساختار تابع تطبیق پذیر و دومی بر اساس یک روش شبکه عصبی مصنوعی تحت عنوان پرسپترون چند لایه به عنوان جایگزین روش سطوح همتراز در حلقه طراحی بهینه استفاده می گردد. در انتهای این کار به منظور اعتبارسنجی الگوریتم ارائه شده یک نمونه گرین فینوسیل مورد بررسی قرار گرفته است و نتایج حاصله نشان می دهد که این روش طراحی گرین، زمان طراحی را به طور قابل توجهی کاهش می دهد و این الگوریتم می تواند در طراحی هر نوع گرینی مورد استفاده قرار گیرد.
کلیدواژه ها:
نویسندگان
سعید مسگری
Aerospace Department, University Complex of Mechanical Engineering, Malek-Ashtar University of Technology, Shahin-shahr, Iran
مهرداد بزاززاده
Aerospace Department, University Complex of Mechanical Engineering, Malek-Ashtar University of Technology, Shahin-shahr, Iran
علیرضا مستوفی زاده
Aerospace Department, University Complex of Mechanical Engineering, Malek-Ashtar University of Technology, Shahin-shahr, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :