DroidNMD: Network-based Malware Detection in Android Using an Ensemble of One-Class Classifiers

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEEMO-16-3_006

تاریخ نمایه سازی: 21 اسفند 1403

چکیده مقاله:

During the past few years, the number of malware designed for Android devices has increased dramatically. To confront with Android malware, some anomaly detection techniques have been proposed that are able to detect zero-day malware, but they often produce many false alarms that make them impractical for real-world use. In this paper, we address this problem by presenting DroidNMD, an ensemble-based anomaly detection technique that focuses on the network behavior of Android applications in order to detect Android malware. DroidNMD constructs an ensemble classifier consisting of multiple heterogeneous one-class classifiers and uses an ordered weighted averaging (OWA) operator to aggregate the outputs of the one-class classifiers. Our work is motivated by the observation that combining multiple one-class classifiers often produces higher overall classification accuracy than any individual one-class classifier. We demonstrate the effectiveness of DroidNMD using a real dataset of Android benign applications and malware samples. The results of our experiments show that DroidNMD can detect Android malware with a high detection rate and a relatively low false alarm rate.

نویسندگان

فریبا غفاری

Tarbiat Modares University

مهدی آبادی

Tarbiat Modares University

اصغر تاج الدین

Tarbiat Modares University

مهسا لمیعیان

Tarbiat Modares University