Stator winding short-circuit fault diagnosis based on multi-sensor fuzzy data fusion

سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 69

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEEMO-15-4_005

تاریخ نمایه سازی: 21 اسفند 1403

چکیده مقاله:

Abstract- This paper uses data fusion based on fuzzy measure and fuzzy integral theory for stator winding inter-turn short circuit fault diagnosis in induction motors. Data fusion be considered in two level: feature level and decision level. Three-phase current signals of induction motor are used for fault diagnosis. Time-domain features are extracted from current signals, and a technique based on fuzzy density is proposed to choose appropriate features. The fuzzy c-mean analysis method is employed to classify different modes. It is used to choose the membership values of each feature for each fault mode. Finally, different features are fused at feature-level using Sugeno fuzzy integral data fusion and at decision-level using Choquet fuzzy integral data fusion to produce diagnostic results. Results show that fuzzy data fusion method performs very well for fault diagnosis in a ۴hp laboratory induction motor. Key words: Fuzzy integral; Data fusion; Fault diagnosis; Induction motor; Stator three-phase current.

کلیدواژه ها:

Fuzzy integral ، Data Fusion ، Fault Diagnosis ، Induction motor ، Stator three-phase current ، انتگرال فازی ، ترکیب داده ، تشخیص و جداسازی عیب ، موتور القایی ، جریان سه فاز استاتور

نویسندگان

حمیده جعفری

Iran university science and technology

جواد پشتان

Iran University science and technology