Humanitarian Relief Logistics Network Design Using Distributional Robust Optimization for Disaster Management
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 10
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 91
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-10_007
تاریخ نمایه سازی: 21 اسفند 1403
چکیده مقاله:
World’s growing population and the frequency of natural disasters as well as managing disasters and continuous improvements in methods and strategies adopted has become an essential global concern. The current paper introduces a two-stage mathematical model designed to minimize operational costs while improving service delivery through incorporating smart city infrastructure. In pre-disaster phase, multiple suppliers, warehouses, and regions are considered, along with such key objectives as allocating suppliers, locating warehouses, managing inventory in addition to identifying regions for smart city development. Post-disaster, the model focuses on routing drone flights for collecting data, distributing relief items, and establishing make-shift relief centers. The second stage comprises both ground and aerial vehicles for logistics and data collection. To handle uncertainty and the model's dual-level nature, a distributionally robust optimization (DRO) approach is exploited. Sensitivity analysis of a numerical example points to the fact that storage costs, demand correlation, and average demand significantly affect total costs. So much so that an increase in these parameters brings about an increase in total operation costs. First-stage decisions yielded ۱۲ efficient solutions for the second-stage model. The obtained results indicate that for reducing shortages in the humanitarian logistics network, there should happen an increase in total costs. The increase should be directed towards using more drones for distributing aid items and gathering information. Given the NP-hard nature of the model, hybrid algorithms were employed, which outperformed exact methods in terms of efficiency. In a real-world case study in Isfahan Province, seven cities (Fereydunshahr, Kashan, Najafabad, Ardestan, Varzaneh, Isfahan, and Shahreza) were identified as smart city infrastructure sites. Five warehouses in Naeen, Kashan, Fereydan, Isfahan, and Shahreza were selected for disaster relief logistics operations. Findings highlight the trade-off between cost and service level, emphasizing the importance of drones in reducing shortages and enhancing disaster response efficiency. Managerial insights highlight the cost-effectiveness of IoT deployment in reducing demand uncertainty and enhancing response efficiency. The proposed framework offers a practical and scalable solution for disaster preparedness and post-disaster management in diverse urban contexts.
کلیدواژه ها:
نویسندگان
F. Kaveh
Industrial Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
M. Karbasian
Industrial Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
O. Boyer
Industrial Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
H. Shirouyehzad
Industrial Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :